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Abstract— The boundary integral equations (BIE’s), in their
original forms, which govern the electromagnetic (EM) wave
scattering in three-dimensional space contain at least a hyper-
singularity (1/R®) or a Cauchy-singularity (1/R?), usually both.
Thus, obtaining reliable numerical solutions using such equations
requires considerable care, especially when developing system-
atic numerical integration procedures for realistic problems. In
this paper, regularized BIE’s for the numerical computation of
time-harmonic EM scattering fields due to arbitrarily-shaped
scatterers are introduced. Two regularization approaches uti-
lizing an isolation method plus a mapping [1] are presented
to remove all singularities prior to numerical integration. Both
approaches differ from all existing approaches to EM scattering
problems. Both work for integral equations initially containing ei-
ther hypersingularities or Cauchy-singularities, without the need
to introduce surface divergences or other derivatives of the EM
fields on the boundary. Also, neither approach is limited to flat
surfaces nor flat-element models of curved surfaces. The Miiller
linear combination [2] of the electric- and magnetic-field integral
equations (EFIE) and (MFIE) is used in this paper to avoid
the resonance difficulty that is usually associated with integral
equation-based formulations. Some preliminary numerical results
for EM scattering due to single and multiple dielectric spheres
are presented and compared with analytical solutions.

I. INTRODUCTION

HERE is a rich literature on boundary integral equation

(BIE) methods for the numerical solution of eleciro-
magnetic (EM) scattering by three-dimensional, homogeneous
scatterers [3]-[8]. For instance, [9] has successfully created
a thin-coating formulation for solving scattering problems by
perfectly conducting bodies with thin dielectric coating. Also,
[10] has solved the scattering problem due to lossy dielectric
bodies using planar, triangular elements. Some fundamental
papers which discuss various BIE formulations to avoid reso-
nance problems include [2], [8], and [11]. Most of these papers
are based on either the combined field integral equations
(CFIE’s, commonly referred as PMCHW formulation [11]) or
the Miiller linear combination equations (ML.CE’s) [12]. For
simpler two-dimensional problems, the authors of [13] have
solved the biological scattering problems using BIE’s.
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Despite the rich literature, anyone with a difficult three-
dimensional problem of EM scattering would find few papers
for guidance which do not require a hypersingular kernel to be
transformed to a lower singularity in trade for a surface diver-
gence or other derivatives of the EM fields on the surface: In
general, the BIE’s for EM scattering contain three-kernel func-
tions associated with each integral equation. If the unknown
density functions are expressed in terms of the tangential fields,
then the three-kernel functions contain a hypersingularity,
a strong (Cauchy) singularity, and a weak singularity. In
the MLCE’s, however, there are two weakly singular-kernel
functions and one Cauchy singular-kernel function. This comes
about from the analytical cancellation of the hypersingular
kernels and is only true for MLCE’s.

In most of the literature we surveyed, the strongly singular
integrals have been evaluated in the sense of Cauchy principal
value (CPV). The only exception is [3] where a technique
similar to our regularization procedure was applied to reduce
the order of the strongly singular kernel functions. This
technique, however, can be considered as a special case of our
regularization procedure. The major disadvantage with CPV’s
is that they are difficult to compute numerically, especially
for curved surfaces. As a result, CPV’s are usually computed
analytically assuming that the surface where they are defined is
locally flat, or even more restrictive; piecewise flat elements
are used to model the entire curved surface. Indeed, in all
but one paper of the literature we surveyed, only flat planar
elements are used everywhere.

In most cases, the hypersingular integral is avoided in one of
two ways: The first is to transfer one of the derivatives from the
hypersingular kemnel function onto the density function. This
results in a strongly singular integral with the unknown being
the surface divergence of the density function. The appearance
now of the surface divergence of the density (or any of its
derivatives), rather than the density itself, is less desirable an-
alytically and strategically, especially for systematic numerical
computing. Also, with this procedure, there remains a strong
(Cauchy) singularity which, admittedly, presents a manageable
computational problem, provided one -adheres to computer
modeling with flat boundary elements. We submit, however,
having to model a given difficult problem with sharply curved
geometry using flat elements is a severe limitation. The second
way is to analytically transform this surface divergence term
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into the normal component of the fields. This results in more
unknowns to be solved and also a strongly singular kernel
function. In a recent paper [14] to solve a simpler two-
dimensional problem, a one-term subtraction was done to
reduce the hypersingular kernel to a Cauchy singular kernel.
Conventional methods are then applied to compute the Cauchy
singular integral. Using this approach, it was seen that the
approximation for the off-diagonal matrix elements close to
the self-patch is not very good.

How to remove the above inconvenience, restrictions, and
computational burdens via regularization procedures, which
are valid for curved elements, is the thrust of this paper.
The present regularization process first analytically reduces
the order of the singularity of the kernel function from either
strongly singular or hypersingular to weakly singular. Next a
mapping from Cartesian to local coordinates is performed. The
mapping process analytically transforms the weakly singular
integrals into regular integrals which are then numerically
computed using ordinary Gaussian quadrature. In this paper,
the BIE’s we begin with came from the MLCE formulation.
This formulation provides a set of uniquely solvable BIE’s
at all frequencies [2]. Another benefit of the MLCE’s is that
the hypersingularities in the original BIE’s are canceled in
the combination, such that only a simpler version of our
regularization procedure is required. With the most general
form of our regularization procedure other formulations such
as the CFIE’s, may also be used.

The formulation in the next section refers explicitly. to
more than one scatterer, and the numerical examples involve
scattering from two dielectric spheres. Numerical results for
the single scattering case are also included to show the
accuracy of the model as the permittivity and the radius
of the scatterer increases. Conceptually, solving multiple-
scattering problems using BIE’s is a straightforward extension
of solving single-scattering problems where the collocation
and integration are over the union of the individual sur-
faces. As a practical matter, however, as the scatterers get
closer to one another, the high-order kernel function will
start to dominate and the solution will quickly diverge if
the kernel functions are left in their original form. This
type of singularity will be referred as near-singularity. The
near-singularity typically creates a numerical problem for
BIE formulations based on CPV interpretations where the
singularity is considered for points on the same surface, but
not for points on separate surfaces. Thus, typically, multiple-
scattering problems due to arbitrarily-shaped objects are solved
for cases where the scatterers are far apart. Furthermore, other
approximate methods exist where only a limited number of
wave interactions are considered [15], [16] or by assuming that
the total scattered field is the sum of the individual scattered
field with no interaction between the individual scatterers [17],
[18]. Rarely are there cases where the full interaction effects
are accounted for in the multiple scattering problem with
arbitrarily-shaped scatterers close to one another. The present
regularization gives rise to well-behaved kernels in the BIE’s
for closely-spaced scatterers. '

Note that other numerical techniques such as the finite ele-
ment method (FEM) and the finite difference method (FDM)
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Fig. 1. Two-scatterer problem.

face difficulty when dealing with multiple scattering problems.
Since FEM and FDM are both field-approximate methods, the
domain to be discretized includes the volume of each scatterer
plus the region exterior to the scatterers. This is a computa-
tionally expensive way of solving three-dimensional scattering
problems. The BIE method is an ideal alternative since the
BIE requires the discretization of only the bounding surface
of the scatterers. This is much easier to do than discretizing
the exterior domain, especially between the scatterers which
would need to be redone every time the relative position of
the scatterers changes. ‘

In this paper, all validation work was done using spherical
scatterers. This was done for comparison with analytical results .
that are readily available only for spherical scatterers. This
model, however, is not limited to spherical scatterers only.
Consequently, further numerical simulations will be performed
for arbitrarily-shaped scatterers and the results will be reported
in subsequent publications.

II. PROBLEM FORMULATION

The simplest multiple-scattering problem is a two-scatterer
problem as shown in Fig. 1. The same formulation procedure
can be extended to cases where more than two scatterers are
present. Two homogeneous scatterers, 1 and 2, characterized
by the constitutive parameters (p1,e1) and (po,€2), respec-
tively, can be of any arbitrary shape, orientation, and location.
The external region e is characterized by the constitutive
parameters (f, ¢ ). The Stratton—Chu representation integrals
[2] form the basis for deriving the governing BIE’s for this
problem. To derive the governing BIE’s, the observation point
P in the limit, is moved to each of the three surfaces, Sg, S1,
and Ss. '

As in the case of the single body scattering, any integration
over the surface Sg goes to zero as R approaches infinity due
to the radiation condition. Consequently, only two surfaces,
S; and Ss, need to be considered. Enforcing the boundary
conditions at the scatterer surfaces

X E=n x E1=-M, ¢))
hox H=hy x Hy = J1 @)
fio x E =iy X By = — M 3)
fio X H=gx Ho = J» “)

where J and M represent the equivalent surface electric and
magnetic currents, respectively. The subscript indicates the
surface under consideration.
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The governing BIE’s are [2]
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where k and m are equal to 1 and 2, but k # m.

The integration takes place over both surfaces and all
subscripts are associated with the material of that region. 7
is the outward pointing unit normal, G, is the free space
Green’s function

_¢*elp—q
Galp.q) = TIrlp—ql ®

w is the frequency of the incident field, and My, and Jinc
represent the cross product between the unit surface normal
and the incident electric and magnetic fields, respectively.
The scattered fields in the external region can be easily
calculated by substituting the solutions obtained from (5)—(8)
into the Stratton—Chu representation integral. There are more
equations than there are unknowns, however, and to avoid the
spurious resonance (eigenfrequency) problem [11], the Miiller
formulation is adopted. The resulting linear combinations are

€e(5) — ex(7)
pre(6) = pm (8)-

(10
an

This results in a set of four BIE’s which is uniquely solvable
at all frequencies.
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III. BIE REGULARIZATION

The particular regularization approach taken in this paper is
the isolation technique [1]. This isolation process can be done
either locally or globally. In both regularization approaches,
the density function is expanded in a Taylor series about the
collocation point. In the case of near singularity, the expansion
is performed at an image point on the integration surface. The
first one or two terms (depending on the order of the singular-
ity) in the expansion are subtracted from the density function
and added back, and the added-back terms are analytically
transformed, using Stokes theorem, to nonsingular integrals.
The assumption taken here is that the density function is
at least Holder continuous, and thus the difference between
the two functions is of O(R) (or O(R?) for the two term
subtraction). The subtraction and addition of the expanded
term(s) is done prior to taking the limit as the -observation
point approaches the collocation point on the surface. All
integrals are at most weakly singular after the limit is taken.
Consequently, there is no jump in the density function in the
limit. The difference between the two approaches, however,
is that for the global scheme, the added and subtracted terms
involve integration over the entire surface, whereas in the loéal
scheme, the added and subtracted terms involve integration
over singular elements only. A singular element in this case
is defined to be the element containing both the field point
as well as the source point [19]. For the near-singular case,
regularization of the high-order kernel functions to weakly
singular kernel functions will result in well-behaved numerical
solutions.

It should be emphasized that in both approaches, to properly
regularize the hypersingular integrals, typically, a two-term
addition and subtraction is needed. Examples of regulariz-
ing hypersingular kernels are found in [20]. As mentioned
earlier, however, with the Miiller formulation, the ‘present
regularization procedure requires only a one-term subtraction.
The regularized forms of (5) using both global and local
regularization techniques, expressed in index form, are shown
in the following.

A. Global Regularization

Map) =nue) | D a0 - 110 s,

0G.(p,q)
dz;(q)

| 9G(p,q)  9Ge(p,q)
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B. Local Regularization
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Here G is the static Greens function, ¢ is the permutation
symbol, and AS is the singular element on which both p and ¢
reside. All of the integrals above are at most weakly singular.
~This weak singularity is finally removed by mapping from
Cartesian to a local polar coordinate system. The mapping
process changes the integration parameters from (dz dy) to
(psiné dp df) where the p cancels out the weakly singular
kernel of O(1/R). The end result after the mapping is a
regular integral which can be easily evaluated using Gaussian
quadrature with unit weight factor. The regularized forms of
(6)—(8) are similar to (12) and (13) and can be obtained using
the same procedure.

IV. NUMERICAL RESULTS

The new BIE’s with regularized kernel functions can be
used to solve both single scattering problems and multiple
scattering problems. We tested this method for both types
of problems with excellent results. In all of our numerical
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Fig. 2. Mapping from a curvilinear element to a local square element.

simulations, scalar quadratic basis functions were used to
interpolate the geometry information and the unknown density
functions. This differs from the vector basis functions approach
used in [10] where the nodal unknowns are scalar quantities.
In our approach, the nodal unknowns are the actual vector
components of the current densities. In addition, curvilinear
elements were used to mesh the scatterer surface. Specifically,
two shapes of elements were used in the simulation. These
are the quadrilateral elements which contain eight nodes per
element and triangular elements which contain six nodes
per element. The quadratic basis functions for quadrilateral
elements are given in (14)—(21). These functions are used to
map the curvilinear elements to a planar square surface defined
from —1 to 1 along each axis. The location of the nodes are
shown in Fig. 2. The expansion of the geometry information
and the density functions are given in (22)—(23), respectively

N =ta+De+DE+6-1) (4
N2(€) = a-DE+D)E-&L+1) (15
N¥ (&) =11 -&) &~ DE+E+1) (6
N (O =L+ D& -D(~a+&+1) (D
No(€) = Ha+ 1)1 - &) (18)
No(¢) =L(& + 1)1 — &) (19)
N7(&) =16 - 1)(& - 1) 20)
No(€) =1(1-&)1-€) @1
zi(€1,&2) = iNa(ﬁhéz)fﬂ? (22)
a=1
M;i(&1,62) = i N®(&, &) M (23)
a=1

where (£1,&2) are the local coordinates defined on the planar
square surface, m is the number of nodes on an element, ¢
represents the component in Cartesian system, and M (z$)
represents the quantity defined on the node «. As can be seen
from (14)~(21), all three components of the surface current
density are continuous across adjacent elements. The same
observation is also made for basis functions defined on the
curvilinear triangular elements [19].

We first tested the new approach on single scattering prob-
lems. It is our experience that typically, it takes about three
to four elements per free-space wavelength in each dimension
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Fig. 5. Scattering cross section versus ¢ for a single sphere. Index of
refraction N = 1.5, ka = 2.0.

to adequately discretize the scatterer surface with refractive
index of two or less. Naturally, this number will increase
as the refractive index of the scatterer increases. Currently,
we determine the required mesh density experimentally for
materials with [V > 2. The exact relation between the mesh
density and the scatterer’s refractive index is still under study.
In this test, the scatterer is consistently discretized into 64
surface elements (m = 64) with 178 nodes (n = 178) for
convenience. Figs. 3—6 illustrate the scattering cross-section
versus the scattering angle plotted against analytical solutions
obtained using the Mie theory [17]. As can be seen from the
plots, there is an excellent agreement between our solutions
and the analytical solutions for a wide range of permittivities.
The maximum percentage etror for the case of &, = 16(N =
4) is about 13 percent for m = 64. As we increased the number
of elements from m = 64 to m = 104 (n = 288), the error
reduced to about 5 percent. Indeed, the error can be lowered
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Incident
-z Plane Waves

Fig. 7. Test configuration for the two-scatterer problem. The vertical inten-
sity is calculated in the z-z plane as a function of 6, where 6 is measured
from the z-axis. The incident field is a unit-amplitude plane wave polarized
in the 4y direction, traveling in the 4z direction.

with a finer meshed surface. The percentage errors for the
other test cases are lower. Next, we tested our approach on
multiple scattering problems. To compare the BIE solutions
with published results, two identical spherical scatterers are
used. The test configuration for the two-scatterer problem is
shown in Fig. 7. This is the test configuration used in [21]
to illustrate the analytical scattering solutions for two spheres.
The incident fields are unit-amplitude plane waves polarized
in the y-direction. The refractive index for both scatterers is
taken to be 1.2 and the radii and the separation between the
spheres are expressed in terms of the dimensionless quantity
ka, where a is the radius of the spheres. The scattered waves
are calculated in the far-field region in the z-z plane as a
function of . In this test, each sphere is discretized into
16 elements consisting of both quadrilateral and triangular
clements for a total of 112 nodes on each sphere. The tests
were done on a DEC 5000/240 workstation with about 10-15
minutes per configuration run. The results are shown in Figs. 8
and 9 for various separations and radii of the spheres. The BIE
solutions are plotted against the solutions at discrete locations
obtained by [21] using the modal expansion method. The
vertical intensity is calculated by dividing the scattered fields
obtained from the two scatterer problem by the scattered fields
obtained from the single scatterer problem. In the plots, the
vertical axis represents the vertical intensity and the horizontal
axis represents the scattering angle §. The two solutions are in
excellent agreement which clearly demonstrates the accuracy
of the BIE method.



CHAO et al.: REGULARIZED INTEGRAL EQUATIONS

BEM 1
Ana Sol 1

08 + Ana Sof 2

0.6+

0.4 4

Vertical Intensity

02+

135
150
165
180

Scattering Angle

Fig. 8. Vertical intensity versus 6 for spheres having a radius of ka = 0.5.
The refractive index of the spheres is N = 1.2. #l separation = 3a. #2
separation = 4a.
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Fig. 9. Vertical intensity versus 6 for spheres having a radius of ka = 1.0.
The refractive index of the spheres is N = 1.2. #1 separation = 2a. #2
separation = 3a. #3 separation = 4a.

V. CONCLUSIONS

A regularized BIE approach for electromagnetic scattering
problems is presented. The approach is versatile in dealing
with any BIE formulations for calculating the scattered fields
due to arbitrarily-shaped scatterers with arbitrary orientation.
Major difficulties in handling singular integrals commonly as-
sociated with integral-equation methods has been overcome by
reducing the order of singularity in the kernel function using an
effective regularization process. This approach is valid for any
order of singularity. It also works for a near-singularity. There
are two major advantages of regularizing singular integrals.
First, the process eliminates the need to calculate the surface
divergence of density functions or the need of introducing
additional unknowns. Second, no analytical interpretation or
evaluation of CPV’s is needed. Thus, curvilinear elements
can be used too, and there is no need to approximate curved
surfaces with flat elements. Accurate numerical solutions have
been obtained which are in excellent agreement with analytical
solutions. The test of the BIE method for irregularly-shaped
scatterers will be performed and compared with experimental
measurements. The results will be reported later.
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