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In this paper, the composite boundary integral equaidii) formulation is applied to scattering of
elastic waves from thin shapes with small Hirtite thickness(open cracks or thin voids, thin
inclusions, thin-layer interfaces, etcwhich are modeled wittwo surfacesThis composite BIE
formulation, which is an extension of the Burton and Miller’s formulation for acoustic waves, uses

a linear combination of the conventional BIE and the hypersingular BIE. For thin shapes, the
conventional BIE, as well as the hypersingular BIE, will degenefatanearly degeneratéf they

are appliedindividually on the two surfaces. The composite BIE formulation, however, will not
degenerate for such problems, as demonstrated in this paper. Nearly singular and hypersingular
integrals, which arise in problems involving thin shapes modeled with two surfaces, are transformed
into sums of weakly singular integrals and nonsingular line integrals. Thus, no finer mesh is needed
to compute these nearly singular integrals. Numerical examples of elastic waves scattered from
penny-shaped cracks with varying openings are presented to demonstrate the effectiveness of the
composite BIE formulation. ©1997 Acoustical Society of Ameri¢&0001-496@7)05008-X]

PACS numbers: 43.35.4¢EB]

INTRODUCTION medium is also studied using this one surface appréath
This single surface model for thin shapes is efficient in mod-

The modeling of thin shapes or thin bodi@éscluding  eling and computation, as long as the hypersingular integrals
shell-like structures, thin inclusions, thin voids or openin the BIE formulations are dealt with properly. However,
cracks in solids, thin-layer interfaces in composites,) @&. there are some drawbacks and limitations with this approach.
of increasing importance and interest in the fields of acousFor example, effects of the varying thickness of a thin body
tics, elastodynamics, and fluid-structure interactions. It isor the opening of a crack cannot be studied using this simple
well known that the conventional boundary integral equatiormodel. The use of the jump terngs.g., pressure jumpin-
(CBIE) formulations, as well as the hypersingular BIE stead of the usual boundary variablgsessurg in the hy-
(HBIE) formulations for acoustic and elastic wave problems,persingular BIE may also present some inconveniences in
will degenerate or break down when they are applied to thinhe study of a regular body with thin shapes, where the regu-
bodies' ™ This degeneracy or breakdown is due to the factar BIE and the hypersingular BIE for thin shapes need to be
that the equation on one side of the thin shape is almost thesed togethel®
same as the equation on the other side, see Fig. 1. Eventually The two surface model of a thin shape is a more realistic
the two equations from the two sides become identical whemodel in that the geometry of the thin shape is not altered.
the thickness of the thin shape approaches zero. In the litergthe effects of the thinness and other details of the thin shape
ture, the BIE formulations developed for dealing with the can be addressed easily using the two surface model. Early
thin shape breakdown can be divided into two groups: ongtudies of scattering oficoustic waves from thin shapes
applied to theone surface modeind one to théwo surface  (rigid disks and fluid inclusions with varying thickness in
modelof the thin shape. One exception to this classificationacoustic medigcan be found in Refs. 2, 3, and 14. In these
is the multidomain methdd which can be used for both one studies, the conventional BIE is used on one surface of the
surface and two surface models. thin shape and the hypersingular BIE on the other surface to

The one surface model of a thin shape is an idealize@btain a nondegenerate system of equations, see Fig. 2. The
model in which the middle surface of the thin shape is cho-use of the two surface model is more computation intensive
sen and usually the hypersingular BIE is applied in terms othan the one surface model, but it does provide more infor-
the pressure jumgfor acoustic problemsor the displace- mation about the physics of the problem than the one surface
ment jump (for elastodynamic problemsacross the thin  model, as demonstrated in these studies. For example, in the
shape. This approach has been applied successfully to tlvase of acoustic scattering from a rigid disk, the scattered
problems of scattering and radiation afousticwaves from  fields from the disk of a finite thicknessh2will depart from
thin rigid bodies, see, e.g., Refs. 6-11. The scattering ofhose fields from the disk of zero thickness, wleis greater
elasticwaves from planar cracks in three-dimensional elastidchan 5% of the radius of the disk. This difference is more
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n n er's BIE formulatiort® for acoustic wave problems, which
CBIE HBIE can remove the fictitious eigenfrequency difficulties in exte-
rior problems. It has also been shown analyticaland will

CBIE HBIE be demonstrated numerically in this paper, that this compos-
ite BIE formulation will not degenerate when applied to thin
shapes modeled with two distinct surfaces. Thus Burton and

Systems of equations degenerate Miller’s type of BIE formulation can overcome the fictitious
eigenfrequency difficulty and the thin body break down dif-
FIG. 1. Degeneracy of the CBIE and HBIE for thin shapes. ficulty at the same time, being likely the most sound and
robust BIE formulations for the acoustic and elastic wave

rProblems.

f For elastic wave problems, the conventional BIE formu-
the disk is a “rippled” one?? All these studies on acoustic lation, which contains strongly singular kernels, has been
waves from thin shapes show that the two surface mode'ﬁm'o“(ad successfully tbulky-shapedyoids or inclusions for
using the combination of CBIE and HBIE can provide aalmost a dgcadésee, e.g.,.Refs. 16.—)lSDn the.other hand,
general BIE formulation and useful information in the analy—the hypersingular BIE, which contains hypersingular kemels

sis of thin shapes. The same BIE formulation can be applie%nd usually written on one surface of a crack and in terms of

to thin shapes with zero thickness or small thickness, as we e crack ope_ning displaceme{@OD), has bgen employed
as to bulky bodies. almost exclusively to the problem of scattering fratnsed

The multidomain methdtf is simple and straightfor- or tight cracks(see, e.g., Refs. 7, 12, and)13o0 the authors’

ward. It can be applied to thin shapes with zero thickness o?eSt knowledge, no BIE solution; have been reported in the
nonzero thickness. In this method, the difficulty of dealingl'ter"’“ure for the problem oelastic wave scattering from

with the degeneracy of the conventional BIE for thin shape’P€"n cracks orthin voids, or thin inclqsions. On_the _other

is avoided by introducing an imaginary interface to divide "2nd, many real problems and experimental calibrations deal
the domain into an interior subdomain and an exterior subWith open cracks, notches, and rough cracks with asperities,
domain. The conventional BIE is applied in the two subdo-for Which the ideal,one surface modeb insufficient. Fur-
mains with meshes on the thin body and interface surfacedher, many situations of interest involve scattering from thin
and the continuity conditions are imposed on the interfacelnclusions and thin-layer interfaces where a shell-like one
This results in a larger system of equations and hence irsurface model or lumped-parameter model of the thin region
creases the burden of computation, because of the introduls inadequate. The present study aims to fill this gap and
tion of the imaginary interface. The multidomain method hagProvide a BIE modeling tool for thin shapes with more real-
been used effectively for problems of radiation and scatterin¢Stic geometry, by using the composite BIE formulation.

of acousticwaves from thin rigid bodie$® Although this This composite BIE formulation applied in this study
approach may be applied to thin body problems posed in ¥@S originally developed in Ref. 20 to overcome the ficti-
more general settinge.g., with varying thickness“it may tious eigenfrequency difficulty existing in the conventional
not be an ideal tool for the thin-body radiation and scatterind®/E formulation of theexterior elastic waveproblems. To

problem in which a relatively large imaginary interface sur-avoid the hypersingular integrals, the hypersingular BIE is
face is usually required.® recast in a form in which all integrals are at most weakly

In this paper, the idea of using a combination of theSingular and thus no special numerical schemes are needed.
conventional BIE and the hypersingular BIE for thin Nearly singular and nearly hypersingular integrals in this
shape$®!*is extended to the problems of scattering and racomposite BIE formulation, which arise when parts of the
diation ofelastic wavedrom thin shapes in elastic media. An boundary surface become close to one another, as is the case
alternative form of the CBIE and HBIE combination is used for thin shapes, are transformed into sums of weakly singular
here for the thin shapes, that is, a linear combination of théntegrals and nonsingular line integrals. Thus, no finer mesh
CBIE and HBIE applied on both surfaces of the thin shapesiS needed to deal with these nearly singular integrals. In or-
see Fig. 2. This composite BIE formulation for elastic waveder to demonstrate the effectiveness of the composite BIE

problems is an extension of the well-known Burton and Mill- formulation for problems with thin shapes, numerical ex-
amples of scattering from penny-shaped cracks with varying

openings are given for both longitudinal and transverse inci-

n n dent waves. Results from these numerical example show that
CBIE CBIE + B HBIE the composite BIE formulation is very stable for all ranges of
g: g the thinness of a thin shape, even when the two surfaces
HBIE CBIE + B HBIE touch each other. It is also shown, as already demonstrated in
acoustic$>that scattered fields for an open crack with an
opening of 21 will depart noticeably from those fields for a
tight crack whenh is larger than 5% of the radius of the
crack, especially for plane shear waves with an oblique inci-

FIG. 2. Nondegeneracy of the combinations of the CBIE and HBIE for thinde_nt angle. All thES(.:) SuggeSt that the ComPOSite_ BIE formU.'
shapes. lation, as proposed in this paper for analyzing thin shapes, is

pronounced in the near field or when the incident wave is i
the direction parallel to the surfaces of the disk, especially i

Systems of equations non-degenerate
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not only robust but also useful in providing information originally proposed to deal with problems of scattering and
about the physics of such problems. radiation frombulky-shapedbjects.

Both the CBIE and HBIE will degenerate, i.e., become
unsolvable or ill conditioned, when they are appliedli-
vidually to thin shapes, e.g., to crack-like probletimagine
that a bulky void becomes a thin void or open craak well

Consider a regioffa body or a voiii with the boundary ~ as true-crack problenfs; see Fig. 1. This degeneracy is
S and immersed in a 3-D infinite, linear elastic medium. Themanifested by the fact that algebraic equations generated
conventional BIE(CBIE) for problems of scattering of time- from the BIE on one surface of the crack deémos} the
harmonic waves in thexterior domain can be written in the same as the equations generated on the other surface of the
f0||owing Weak|y Singu|ar f()rrﬁ8 (index notation is used in crack. The condition number of the system of equations will

I. THE COMPOSITE BIE FORMULATION

this papey: increase sharply as the two surfaces of the crack become
close. As discussed in Refs. 2 and 3, one remedy to this
ui(po)_l_J[Tij(p,po)_Tij(p'po)]uj(p)ds(p) degenergcy associated with the crack-lik@ thin-body
s problem is to apply CBIE on one surface of the crack and

HBIE on the other surface. This approach, using two sur-
+ fT_ij(p,po)[uj(p)_uj(po)]ds(p) faces in the model, has been demonstrated to be very effec-
S tive for acousticwave scattering from thin rigid screérend
thin inclusions® Alternatively, and perhaps more advanta-
:f Uij(P,Po)tJ(P)dS(P)+U!(Po)' VPyeS, (1) geous due to the symmetry, it was found that Burton and
S Miller's composite BIE formulatiort? using a linear combi-
whereu; andt; are the total displacement and traction vec-hation of the CBIE and the HBIE as shown symbolically by
tors, respectivelyl);; and Tj; the two dynamic kernelgde- CBIE+BHBIE=0 3

pendence on the frequency is implied;; the static kernel, ) . . .
u} the displacement vector of the incident wa®eand P, (B is the coupling parametewill not degenerate when it is

the field and source points, respectively. For interior prob-&PPlied on both surfaces of a thin void or thin bddsee Fig. .
lems, the free terms; (Py) andu:(Po) in Eq. (1) will not be 2. This composite formulgtlgn Was.orlgmally propqsgd in
present. Ref. 15 tp overcome the flct|t|ous_ e|genfrequer_1<:y d|ﬁ|9ulty

The hypersingular BIEHBIE), or traction BIE, can be (FED) existing in the BIE _formulatlons_ for extenqrcoustlc _
written in the following weakly singular forrf wave problems. Recent implementations of this composite

BIE formulation to deal with the FED, with weakly singular
forms of the HBIEs as key ingredients, can be found in Ref.
20 for elastic wave problems and in Ref. 21 facoustic
wave problems.

The composite BIE formulatio3), in the context of
elasticwave problems, using the linear combination of Eq.
(1) (CBIE) and Eq.(2) (HBIE), is employed in this study to
+ J [Hij(P,Po)—H;;(P,Po)]u;(P)dS(P) investigate the problem of elastic wave scattering from thin

s shapede.g., open cracksn 3 D. This composite BIE for-

ti<Po>+JSH_i,-<P,Po)

X

(9 .
u,—(P)—uj<Po>—a—;<P0><§a—goa)}dsm>

au L mulation is quite general and can be applied to many other
+EjkpqCaq (9_" (pO)J [Kij(P,Po)ny(P) thin body problems, such as thin inclusions, thin-layer inter-
£a S faces in composites and so on. The main objective here is to
demonstrate the advantages of this composite formulation
which can overcome both the fictitious eigenfrequency diffi-
_ . T ‘ culty and the thin body difficulty in the conventional BIE
a fs[K”(P’ Po) + T;i(P.Po)It;(P)ASP) formulation. The acoustic wave counterpart of this formula-

+T;i(P,Po)n(Po) [dS(P)

tion (Burton and Miller's BIE formulation has the same

_fT—ji(P,PO)[tj(P)_tj(PO)]dS(P)+ti|(Po), feature. Thus this composite BIE formulation can provide
s unique solutions for scattering from bodies with any shapes
VPoeS, (2)  (including thin shapesand at any frequencies. This means

that one does not need to switch BIE formulations when
dealing with fictitious eigenfrequency and thin body prob-
lems.

in which H;; andH;; are the dynamic and static hypersingu-
lar kernels, respectivel¥;; andK;; another pair of singular
kernels,n, the components of the normd;,, the elastic
modulus tensor¢, and &, («=1,2) the two(tangentia)
coordinates of the pointB and Py, respectively, in a local
curvilinear coordinate system defined on the surfacand
€= 9&,10% evaluated att,=¢&p, (k=1,2,3). Details of To apply the composite BIE formulation to thin-body
the derivation, notation and expressions of all the kerneproblems, one has to overcome another difficulty, i.e., the
functions in Eq.(2) can be found in Ref. 20. This HBIE was nearly singularand nearly hypersingular integralsvhich

II. NEARLY SINGULAR AND HYPERSINGULAR
INTEGRALS
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FIG. 3. Nearly singular integrals on surfad& enclosed by lineC.

FIG. 4. A penny-shaped open crack with normal incident longitudinal wave.
arise when collocation point is on one surface of the thin
body and integration need to be performed on the other — . . ) .
nearby surface. Many numerical schemes for computing thg/herer =| POP'.’ VIS P0|sson§ ratioC is the boundary
nearly singular integrals can be found in the literature of the V€ OfAS, €ij is the permutation tensor, and
boundary element metho@EM). Among all the available 1 1 or
methods, the line integral approach, i.e., transforming the 'Q(PO):_E JAsr_za_n
nearly singular integral into a sum of weakly singular inte-
grals and nonsingular line integrals, is believed to be thdS @ solid angle integral which can also be evaluated using a
most effective and efficient orfé.It is the method adopted line integral. All these line integrals are nonsingular at all
and implemented in this study. since the source poiR, is always off the contouC. The

A typical nearly singular integral in Eq1) (CBIE) is  nearly hypersingularintegrals presented in E¢2) (HBIE)

the one with the stress kernel functidy) and integrated on can be dealt with in a similar way. The expressions of the

a surfaceA S with source pointP, nearby, Fig. 3. Her& S line integrals for integrals involving thstatic hypersingular

can be one element or several elements on the suBace kernels can be found in Ref. 22.

This nearly singular integral can be dealt with by adding and ~ Using this line integral approach to deal with the nearly

Subtracting terms in the fo”owing manner: Singular integrals iS Very efficient in Computation. One dOES
not need to use more elements in the model in order to
handle these nearly singular integrals. It was found that the

fASTij(P,Po)Uj(P)dS(P) CPU time used to compute these nearly singular integrals
using the line integral approach is only a fraction of that
when using many subdivisions on the original surface ele-

:f [Tij(P,po)_T_ij(p,po)]uj(p)dS(p) ments, in achieving the same accuragy.
AS

ds

— Ill. NUMERICAL EXAMPLES
+LSTij(P,Po)U,-(P)dS(P)

To demonstrate the effectiveness of the proposed com-
_ posite BIE formulation for problems involving thin shapes,
=f [Ti;(P,Pgo)—Ti;(P,Pg)Ju;(P)dS(P) the problem of elastic wave scattering fraspen crackss
AS studied, for which an analytical solutibhis available when
_ the opening is zero.
+ LSTij(P,Po)[Uj(P)—Uj(Pé)]dS(P) In the first case, a penny-shaped open crack with radius
a and thickness R in a 3-D elastic medium is impinged
, — upon by a plandongitudinal wavein the normal direction,
+U1(Po)fASTiJ(P'P0)dS(P)' (4) see Fig. 4. The scattering cross section for various openings
at the nondimensional(sheay wave numbers Ka
in which P} is the closest point oA S to P, (an image point — 1:2:---,6 arecomputed using the composite BIE and com-
of P, on AS), see Fig. 3. The first two integrals i) are  Pared with the analytical sqlutléﬁ(on]y a limited number of
now at most nearly weakly singular and can be compute&ja,ta points are gvallable\/hlch is valid for true tight cracks
using the normal quadrature. The last integral4ncan be  (With zero opening

transformed into line integrals as follo. Figure 5 shows the results for a very small opening
(h=0.00000%) using an increasing numbei( of noncon-

o 1 1 forming quadratic boundary elemeft®?!on the two sur-
f Tij(P,Po)dS(P)=1(Po) &;; + 2 Siik é — dxy faces of the crack. As expected, the BIE solutions are con-
as & cf verging to the analytical solution for the tight crack. The
1 small difference is probably due to the fact that the singular-

+ m €jkI § rik dX, ity feature of the field near the crack tip is not built in the
boundary elements in that region. The singularity feature

(5)  near the tip of aropencrack, which depends on the “open-
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FIG. 5. Convergence of BIE solutions fdr=0.000004%, longitudinal FIG. 7. BIE solutions using 56 elements at different openings, longitudinal
wave. wave.

ing angle” at the crack tip, is difficult to implement and with the analytical solution given in Ref. 23 for a tight crack.

hence is not attempted in this study for elements near the Figure 9 shows the convergence of the composite BIE
crack tips. solutions for the openindi=0.00000h and at the wave

Figure 6 is a similar plot, but for a larger opening ( numberKTa=é_1. The small gap between tht_e BIE solutions
=0.022). The BIE results are still converging to the tight and the analytical solution maybe once again due to the sin-

crack solution. This shows that the small opening does nogularity near the crack tip which is not implemented in the

have a noticeable effect on the far-field data, at least for Loundary elements. , _
plane longitudinal wave in the normal direction of the crack. ~ Figure 10 is a plot of the BIE solutions using 56 bound-

Figure 7 shows the results for the crack with four differ- &Y €lements for different openings andkata=4. Unlike

ent openings using 56 boundary elements. Noticeable depdf?® case of normal incidence of longitudinal wai¥gg. 7),

ture of the BIE solution from the analytical solution for tight Significant departure of the BIE solution ht=0.0% from
cracks is observed at the opening 0.0%. This is the de- the analytical solution for tight cracks is observed. Similar

parture point for the longitudinal wave in the normal direc- Phenomenon is present at a lower wave numiéfa=3),
tion. Whenh>0.1a, further departures from the tight crack @S shown in Fig. 11. _ _
solution can be observethot shown here and one can In all th(_e computations, the systems of equations using
choose either CBIEBlone or HBIE aloneto solve the prob- the composite BIE formulation are well behavebndition

lem since the degeneracy associated with them is not so sBYMbers are loyv The choice of the coupling parametgr
vere. used in Eq(3) is not so restrictive and values between to

In the next case, the open penny-shaped crack is im¥ 1 @re found to be adequate.
pinged upon by plane shear waves at different angles of in-
cidence, see Fig. 8. The scattering cross sections are cort. CONCLUSION
puted, using the composite BIE, at each argdaging from

- ! o Th m i ndary integral ion formulation
0° to 90° with a 15° incremepbf incidence and compared e composite boundary integral equation formulation,

using a linear combination of CBIE and HBIE, is proposed
for elastic wave problems involving thin shagegen cracks
or thin voids, thin inclusions, thin layer interfaces, gtood-

4.0E+0
eled withtwo surfacesThe BIE formulation is very stable
no matter how close the two surfaces are, and no undue
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FIG. 6. Convergence of BIE solutions far=0.02a, longitudinal wave. FIG. 8. A penny-shaped open crack with oblique incident shear waves.
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FIG. 11. Solutions using 56 elements at different openings, shear wave

FIG. 9. Convergence of BIE solutions fdr=0.00000&, shear wave (Kra=3).

(Kra=4).
closed cracks, fluid-thin shell like structure interactions, all

numerical burden is associated with the nearly singular inte®f which are demanding problems. More complicated nu-
grals in this approach. This composite BIE is demonstratedmerical example problems are being studied along these
to be very effective in the study of scattering from openlines and the results will be reported in future papers.
cracks. Preliminary numerical results show that scattered
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