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Abstract

An improved weakly-singular form of the hypersingular boundary integral equation (HBIE) for 3-D acoustic wave problems is presented
in this paper. Compared with the weakly-singular form of the HBIE published earlier [Y.J. Liu and F.J. Rizzo, A weakly-singular form of the
hypersingular boundary integral equation applied to 3-D acoustic wave problems, Comput. Methods Appl. Mech. Engrg. 96 (1992)
271-287], this new form involves only tangential derivatives of the density function and thus its discretization using the boundary element
method (BEM) is easier to perform. Instead of using nonconforming and C' continuous boundary elements advocated earlier, C° continuous
(conforming quadratic) elements are employed in the discretization of this weakly-singular form of the HBIE. Some justifications on using
C" elements for HBIEs are provided to reflect the current views on this crucial issue for HBIEs. It is postulated that the original C'*“
continuity requirement for the density function in the analytical HBIE formulation can be relaxed to piecewise C'* continuity in the
numerical implementation of the weakly-singular forms of the HBIE. Numerical examples of both scattering and radiation problems clearly
demonstrate the accuracy and versatility of the new weakly-singular form of the HBIE for 3-D acoustics. © 1999 Elsevier Science S.A.
All rights reserved.

1. Introduction

Hypersingular boundary integral equations (HBIEs), which are derivatives of the conventional boundary
integral equations (CBIEs), have become a useful alternative approach in the analysis of many mechanics
problems, for which the CBIEs are insufficient or fail. In particular, for exterior acoustic or elastic wave
problems in the frequency domain, the solutions of the CBIE formulations are nonunique at the eigenfrequencies
of the associated interior problems [1,2]. These frequencies are called fictitious eigenfrequencies because they
do not have any physical significance for the exterior problems. Burton and Miller’s composite BIE formulation
[3], using a linear combination of the CBIE and HBIE, has been demonstrated to be the most effective and
theoretically-sound approach among all the methods available in dealing with this fictitious-eigenfrequency
difficulty (FED) in acoustics [4—14]. An extension of this composite BIE formulation to elastodynamics [15,16]
has also been shown to be effective in dealing with the FED in exterior elastic wave problems [17]. Most
recently, it was found that the HBIEs can play a crucial part in the analysis of acoustic and elastic waves for thin
bodies (thin structures, open cracks, etc.) [18-21]. Certainly, HBIEs will find more and more applications in the
field of applied mechanics as their effectiveness and the weakly-singular features are recognized and employed
in the BIE formulations and their BEM solutions.

The most difficult part in implementing HBIEs has been in dealing with the hypersingular integrals.
Employing the weakly-singular or regularized forms of the HBIEs is, perhaps, one of the most desirable
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approaches to implement the HBIEs using the BEM. Various regularization procedures used to reduce the order
of singularity in HBIEs have been devised in the last decade. A general introduction to HBIEs can be found in
[22] and a comprehensive review on the regularization techniques in [23]. In the regularized forms of the
HBIEs, the hypersingular integrals, which must be interpreted in the sense of Hadamard finite part (HFP)
[24-26], are transformed to strongly singular integrals in the sense of Cauchy principal value (CPV) or better
yet, weakly singular integrals for which the commonly used numerical procedures in the BEM are applicable.
Many successful numerical computations of the HBIEs for various problems, employing the regularized forms
of the HBIEs, have been reported in the references mentioned in the previous paragraph.

However, a serious theoretical issue associated with the HBIE formulations is the smoothness requirement. It
has been shown [27,28] and gradually accepted in the BEM community [23] that for the hypersingular integral
to exist, the derivatives of the density function must be Holder continuous (at least in the neighborhood of the
source point). This means that theoretically only boundary elements that ensure the C' continuity near each
node can be applied in the discretization of the HBIEs. These types of boundary elements include both the
nonconforming elements where the nodes are moved inside the elements so that the continuity requirement is
met in the neighborhood of the nodes [14,17,22,29,30], and the C' continuous elements such as the Overhauser
and Hermite elements [14,17,31-35]. This stringent requirement for the density function in HBIEs has seriously
hindered the applications and acceptance of the HBIEs in the BEM community, because of the inefficiency of
the nonconforming elements and the complexity of the C' elements. Relaxation of this smoothness requirement
on HBIEs has been attempted by several authors in the past using conforming boundary elements [12-14,36,37].
The validation of this relaxation received renewed attention recently [38,39] due to a strong desire to do so in
the BEM community.

In the context of 3-D acoustics, the seeming difficulty in dealing with the hypersingular integrals and the
associated issue about the efficiency of HBIEs have prevented the composite BIE from gaining popularity in
engineering applications beyond the academic research. Earlier works on treatment of the hypersingular integrals
in the Burton and Miller’s BIE formulation give rise to various integrals which are still difficult to compute and
usually limited to the use of constant boundary elements [4—11]. In 1990, Chien et al. [12] presented a
comprehensive work on the composite BIE formulation for 3-D acoustics with a thorough review of the earlier
works. In [12], the hypersingular integral in the HBIE was converted into a special Cauchy principal value
integral and was evaluated using a special numerlca] procedure with adaptive subdivisions of the singular
element. Most noteworthy in [12], quadratic C° {conforming) boundary elements, in violation of the theoretical
smoothness requirement for HBIEs, were employed and, interestingly, very good numerical results were
obtained. A similar approach, that is, to transform the hypersingular integral into a CPV integral before the
discretization, was developed by Wu at el. in [13]. A more conservative approach was adopted in [13] where
quadratic C° boundary elements were used for the discretization but with the collocation points, which are
distinct from the nodes, located inside the elements in order to meet the smoothness requirement. A rectangular,
overdetermined system matrix was obtained and a least-squares procedure was employed to solve this system. In
1992, Liu and Rizzo [14] presented a weakly-singular form of the hypersingular BIE for 3-D acoustic wave
problems. In this weakly singular form of the HBIE, all the integrals are at most weakly singular and thus can be
computed using the ordinary numerical quadrature in the BEM. Three types of boundary elements, namely, the
conforming quadratic, nonconforming quadratic and Overhauser C' continuous elements, were employed in
[14]. Very good numerical results for wavenumbers up to 5w were obtained by the nonconforming and
Overhauser elements, both of which satisfy the smoothness requirement. The numerical results using
conforming elements, which violate the smoothness requirement, did converge, but at a slower rate. Serious
questions regarding the validity of using conforming boundary elements for HBIEs were raised in [14],
including the overstated criticism of the work in [12] about the relaxation of the smoothness requirement.

It has been a dilemma for a long time that on one hand, theory dictates that smoothness requirement must be
satisfied for the HBIEs to be meaningful; on the other hand, good numerical results have been obtained by using
conforming C° boundary elements for various forms of the HBIEs. This unsettled situation for the HBIES may
be one of the main reasons for their slow acceptance in the BEM community, even though the formulation based
on the HBIE has been proved to be a very sound and effective approach in overcoming the fictitious-
eigenfrequency difficulty and thin-shape breakdown simultaneously in acoustic problems. In light of the recent
thinking [38, 39] on the smoothness requirement for HBIEs and its relaxation, and the continued successful
studies using C° conforming elements for HBIEs [12-14,36,37], it is necessary to re-address the issue of
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smoothness and its relaxation for HBIEs, and clear the way for the applications of the HBIEs in various fields of
mechanics.

In this paper, an improved weakly-singular form of the HBIE for 3-D acoustic wave problems is presented.
Compared with the weakly-singular form of the HBIE for acoustic problems published earlier in [14], this new
form involves only tangential derivatives of the density functlon, and thus its discretization using the BEM is
easier to perform. Instead of using nonconforming and C' continuous boundary elements as advocated in [14],
conforming quadratic elements are employed in the dlscretlzatlon of this new weakly-singular form of the HBIE.
Justifications on relaxing the original smoothness (C' continuous) requirement on the HBIE are provided in this
paper, in the context of acoustics, to reflect the current views on this long-debated issue about HBIEs. The new
form of the HBIE is applied in the composite BIE formulation to overcome the fictitious eigenfrequency
difficulties in 3-D acoustics using BIEs. Numerical examples of both scattering and radiation problems are given
to demonstrate the accuracy and versatility of the new weakly-singular form of the HBIE.

2. The new weakly-singular form of the hypersingular BIE

We start with the following Helmholtz integral representation

ap(P aG(P Py)
CPy)B(P,) = f [ 6.p) 2280 P | s+ 80 M

where ¢ is the total acoustic wave (the perturbation pressure or velocity potential) satisfying the Helmholtz
equation V>¢ + k2¢ =0 for time harmonic waves, ¢’ is a prescribed incident wave (for scattering problems
only), G(P, P,)) = e*"/(4wr) is the full space Green’s function for the Helmholtz equation, and the coefficient
C(P,) =1, 1/2 or 0 when the source point P, is in the exterior region E (acoustic medium), on the boundaiy §
(if it is smooth) or in the interior region B (a body or scatterer), respectively (Fig. 1). Eq. (1) with P, € § is the
commonly used form of the conventional boundary integral equation (CBIE) for acoustic wave problems. This
is a singular form of the CBIE which can be converted into a weakly-singular form readily using an integral
expression for the coefficient C(P,) [40].

To derive the hypersingular BIE (HBIE), we first consider the following directional derivative of the
representation integral (Eq. (1) with P, € E) at point P, in the direction n, (n, will be the surface normal when
P, is on the surface, Fig. 1)

3pP,) dG(P, P,) ap(P) 'GP, P,) 86'(Py)
an, —L[ an, on  onon, d(P) | dS(P) + ang VP,EE. )

When the source point P, approaches the boundary S, the second integrand becomes hypersingular (integrand is
O(1/r%)). In [14], a weakly-singular form of the HBIE was derived by employing a two-term Taylor’s series
subtraction from the density function and using the identities for the Green’s function [41,42] to evaluate the
added-back terms. In that subtraction, the total gradient of ¢ at the source point P, was used, that is,

S
R, 0¢)

\ =
P(x.)

Fig. 1. The acoustic medium E, body B and boundary S.
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¢( o)

o, —xo), k=1,2,3. (summation over & implied)

AP — ¢(Py) —

Instead of using this total gradient, it is found that the subtraction using a ‘surface gradient’ or the tangential
derivatives as expressed by

9¢(Py) _ . _
&P — H(P,) — FY: (¢, —&.), a@=1,2 (summation over @ implied)

is sufficient to remove or regularize the hypersingularity of the kernel, where £, and &, are the first two
(tangential) coordinates of a local curvilinear coordinate system O¢, £, £, with origin at point P, (Fig. 2). This
approach was adopted in [17] in regularizing the hypersingular BIE for elastodynamic problems.

To regularize the hypersingular and the strongly singular integrals in (2), we need the following three integral
identities for the static Green’s function G = 1/(4wr) [41,42]:

aG P,
f (a fe) dsep) = (the first identity)
M

3’G(P, P,) o
J; on dn,, dsP)=0, (the second identity)

3°G(P, P,) IG(P, Py) L
“anon. O — x0}dSP) = | ————n,(P)dS(P), (the third identity)
s nong, s on,

where the source point P, is in the domain E.

Following the procedure as described in [14], using the tangential derivatives in the subtraction, and
employing the three integral identities shown above to evaluate the added-back terms, we can regularize the
hypersingular integral in (2) as follows:

j 3*G(P, P,) ‘f PR _
¢ anan, PPVASPY= | o= (GP Po) ~G(P, Po)l(p) dS(P)

3°G(P, P,) P,)
+£——_6n anoo [¢(p)—¢(Po)— (gf" (€&, — &) ]dS(P)

ao(Py) [ [ 0GPy 9GP, P,)
ak afa s [ aﬂo nk(P) + an__

+e nk(Po)] dsp), VYP,EE,

(3

where e,, = d£,/dx, (k=1,2,3) are the first two column vectors of the inverse of the Jacobian matrix and
(&4 — oa) = €a1x, — x,). The singular integral in (2) can also be regularized using the first integral identity
shown previously to yield:

X3

X

Fig. 2. The global and local coordinate systems.
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dG(P, P)) a¢(P) _ f [aG(P, P,) oGP, PO)] dp(P)
L g on SO =T T on 950
3G(P, P,) [a¢<P) a¢<Po>]
—fs p o |4S®P), VPEE, (4)
where
IGP,P,) OGP P)| [aGwP) aG®E P, ]| &GP, P,) ~
[ anoo t " on :l_l: an,  an, ]+ ax, [2(P) = n,(Py)]

which represents a weakly-singular kernel as P approaches P, when S is smooth near P,.
Substituting (3) and (4) into (2) and letting P,— S, we obtain the new weakly-singular form of the
hypersingular BIE:

¢Py) | f 3’G(P, P,)
on, s dnodn,

PP
[¢(P) - oy -2 (g, - foc)] ds(p)

3’ —
+ L [G(P, Py) —G(P, Py)](P) dS(P)

on dn,
dH(P dG(P, P dG(P, P,)
Co d;ff o) S[ g"o o) nk(P)+—-(an—°nk(P0)] dS(P)
[ [aGe. Py 8GE P) ] agpp)
—_L[ an, * on ] an dSE)
IG(P, Py) [ d(P) a¢(Po>] 3¢'(Py)
_fs " [ - on | 4SB) TGS vREs, (5)

in which all the integrals are at most weakly-singular, if ¢(P) has continuous first derivatives. This theoretical
continuity requirement on the density function ¢(P) and its relaxation in the discretization of the HBIE (5) will
be further discussed in the next section.

Eq. (5) is the desired weakly-singular form of the hypersingular BIE for acoustic wave problems. It is
interesting to note that the HBIE for acoustics in the form of (5) exhibits a term-by-term correspondence with
the HBIE for elastodynamics developed in [17]. Compared with the form used earlier [14], this new form is
much easier to discretize because the tangential derivatives of ¢(P) can be evaluated readily using shape
functions on an element. The discretization procedure for (5) is similar to that described in [14].

The well-known Burton and Miller’s formulation [3], or composite BIE, using a linear combination of the
CBIE and HBIE as represented symbolically by

CBIE + BHBIE = 0

with B being a coupling constant, can furnish unique solutions at all frequencies. Discussions on the choices of
B, which have been found to be rather non-restrict, are given in [5,12,14,43,44]. This composite BIE has been
demonstrated to be the most effective and theoretically-sound approach in acoustics and sound-structure
interaction problems [12-14,45], as long as the hypersingular integral is dealt with properly.

3. Relaxation of the smoothness requirement for the HBIE

It has been well established that the theory imposes a C'* continuity requirement on the density function
@(P), in order for the following limit of the hypersingular integral

) 3’G(P, P,)
}!;TS L —Wrb(P) ds(pP) (6)

to exist [25,27-29]. This means that the derivatives of the density function ¢(P) must be Holder continuous in
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the neighborhood of the source point P,,. This will exclude, theoretically, the use of C ® boundary elements, such
as the conforming quadratic elements, in the discretizations of hypersingular BIEs.

In the previous numerical work [14,17,20,21,29,30], this smoothness requirement was enforced to the full
compliance. The nonconforming quadratic elements, which are formed by moving the nodes inside the elements
so that the smoothness requirement is met in the neighborhood of the nodes, were applied for HBIEs in [14,29].
The Overhauser C' continuous surface elements [31,32] were applied in [14,33]. These two types of boundary
elements have been used successfully for the implementations of the hypersingular BIEs for various validation
type of problems, but they suffer serious drawbacks in real applications regarding the efficiency. The
nonconforming elements are not even C ? continuous across the element boundaries. Furthermore, since the
nodes are no longer shared by neighboring elements, more nodes and hence a larger system of linear equations
will be needed if the same number of elements is used as for the conforming elements. The Overhauser C'
(quadrilateral and triangular) elements are very accurate, as demonstrated for 3-D acoustic and elastic wave
problems in [14,17,33]. However, their implementations are difficult for 3-D problems due to their complexity,
especially for 3-D domains with edges and corners. The Overhauser elements for 2-D problems with corners
have been successfully implemented in [35]. A recent extension of the Overhauser elements to construct C 2
continuous boundary elements for 2-D problems can be found in [46]. However, the gains in accuracy by
employing the higher order elements (beyond C° quadratic elements) are often offset by the lost in efficiency in
BEM discretizations, which is even more so for 3-D problems.

Adopting a different approach to avoid the use of nonconforming or C' continuous elements, several authors
have attempted using C ® conforming quadratic elements for various regularized forms of the HBIEs and
obtained good numerical results. In [12], the hypersingular integral in the HBIE was converted into a special
Cauchy principal value integral and evaluated using a special numerical procedure with adaptive subdivisions of
the singular element. C ® conforming quadratic boundary elements, in violation of the theoretical smoothness
requirement for HBIEs, were employed and, interestingly enough, very good numerical results were obtained. A
similar approach to transform the hypersingular integral into a CPV integral before the discretization was
developed in [13]. A more conservative method was adopted in [13] where quadratic C° boundary elements
were used for the discretization, but with the collocation points, which are distinct from the nodes, being placed
inside the elements. In [14] the conforming quadratic elements were also applied for a weakly-singular form of
the HBIE for 3-D acoustic wave problems, in addition to the nonconforming and Overhauser elements used. The
numerical results using conforming quadratic elements did converge, though at a slower rate. All these
successful attempts, as well as the tests for elastostatic problems [37,38,47], have shown that the implementation
of the C” conforming elements for HBIEs is possible and efficient. The question is nor “if this can be done’, but
‘why this can be done’ and how to justify this approach. In the following, justifications for using the C°
conforming elements for HBIEs are provided, based on an analogy of the BIE formulations with the finite
element method (FEM) regarding the strong and weak formulations.

It is well known in the FEM that for a given boundary-value problem, one can start with either a strong
formulation or a weak formulation to perform the finite element discretizations. Strong formulation and weak
formulation have different requirements on the smoothness of the functions involved. For example, consider the
following classical two-point boundary-value problem (BVP) (see e.g. [48]):

—u"x)+ux)=0, x€E(0,1)
u(0)y=0, w'(l)=a

where a is a given constant. One can start with the following statement:
1
j (—u"+wudc=0 (7)
0

where v is the test function in a function space. In (7), it is necessary for u"(x) to be continuous for the integral
to be meaningful. Applying integration by parts for (7), one arrives at

1
J u'v' +uv)dx =av(l). (8)
0

Here, it is sufficient for u’(x) to be continuous. Statement (7) is a weighted residual or strong formulation, while
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statement (8) a variational or weak formulation, for the original BVP. They have different regularity or
smoothness requirements for the functions involved in order for the integrals to be meaningful. Most of the FEM
formulations are based on the weak or variational formulations such as the one shown in (8), since the
smoothness requirement for the weak formulations is less than that for the original BVP or the strong
formulations.

It is argued here that the HBIEs containing the hypersingular integrals in the sense of HFP, as expressed by
(6), are similar to the strong statement in (7); while the weakly-singular forms of the HBIEs containing
weakly-singular integrals, as expressed by

3°G(P, P,) IB(P,) ]
L onon, [¢<P)—¢(Po>— o, (6o~ b0 [4SP), 9)

are similar to the weak statement in (8). However, for the BIE formulations it is the order of singularity of the
integrand that is strong or weak; while for the FEM formulations it is the order of derivatives in the integrand
that leads to the phrase strong or weak. If this analogy using the strong and weak formulations between the FEM
and BIE holds, then we can have a clearer picture of the smoothness issue for the HBIE formulations. Similar to
the FEM formulation, it is natural to have a stronger smoothness requirement for the function in the strong
formulation (expression (6) in the sense of HFP), since it involves higher order of singularities. This stronger
smoothness requirement should be assumed as well in the derivations of the weak formulation from the strong
one. However, once the weak formulation (expression (9)) is obtained, one can relax the smoothness
requirement for the function involved, based on the new conditions under which valid numerical solutions can
be obtained from the new formulation, which has been the case in the FEM (cf. Egs. (7) and (8)). The ultimate
question will be: will the numerical solution converge to the analytical solution? Although it is difficult to
provide, and it may not appear for sometime, the proof of the convergence for the weakly-singular forms of the
HBIEs with conforming elements, one should not cease to apply these weak forms of HBIEs with conforming
elements. Numerical tests on the convergence can be carried out easily and they often provide reliable
indications of the behaviors of the formulations.

Then, what is the condition under which valid numerical solutions using the weakly-singular form of the
HBIE can be obtained? For the purpose of discussion, let us assume that S in the integral (9) is composed of two
boundary elements and the source point P, is at the mid-node on the common edge of the two elements.
Examining the weakly-singular integral in (9) carefully, one notices that the integral will be meaningful, i.e.
provide a finite number (in fact, the sum of two separate finite numbers from each element), if the density
function ¢ is piecewise C"** continuous over each individual element. This means that C° conforming quadratic
elements, which are piecewise C"“ continuous as well, can be applied to the weakly-singular forms of the
HBIEs. This is exactly the same argument used in the FEM for the weak formulation (8) where less smooth
functions can be used, because of the specific form of the integral present in that formulation.

From the above discussions, we postulate that the original C'** continuity requirement on the density function
in the analytical HBIE formulation can be relaxed to piecewise C'*“ continuity in the numerical implementation
of the weakly-singular forms of the HBIE. This relaxation means that conforming linear, quadratic, and other
higher-order elements, as well as nonconforming elements (including the constant elements), can be applied to
the weakly-singular forms of the HBIEs. With this relaxation, we can also avoid the awkward situation,
associated with the applications of HBIEs for a long time, that nonconforming elements (which are not even C°
continuous) are advocated to be applied for HBIEs, while conforming elements (which are at least C°
continuous) are prohibited from being applied to HBIEs, according to the original C"* continuity requirement.
The focus on the smoothness issues should now be turned to proving the convergence of the weakly-singular
forms of the HBIEs with conforming elements. The theoretical proof may be hard to attain, but the numerical
tests, including the ones provided in the next section and by others [12,37,38,47], can provide a clear indication
about the validity of this relaxation.

4. Numerical examples

Studies on the scattering and radiation from spherical and cylindrical bodies were conducted to verify the
developed composite BIE with the conforming quadratic elements (Fig. 3).
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Fig. 3. Conforming quadratic boundary elements.

The first numerical study is for a spherical body (of radius a) immersed in an acoustic medium (Fig. 4), for
which analytical solutions [12,49] are available for both the scattering and radiation problems. In all cases, M is
the total number of elements used.

Fig. 5 shows the scattered wave at ka = 77 when the sphere is impinged upon by an incident wave ¢’ in the
x,-direction, using the composite BIE with conforming quadratic elements. The sphere is rigid where d@/dn =0
on S. Magnitude of the normalized scattered wave [¢°/¢’| at r = 5a is plotted versus the angle 6 (Fig. 4).
Wavenumber ka = 7 is a fictitious eigenfrequency for the conventional BIE, so CBIE can not be applied
successfully (condition numbers of the system of equations are in the range of 10°~ 10’, a clear indication of the
non-uniqueness of the CBIE solutions). However, the results using the composite BIE are very stable and low
condition numbers (below a few hundreds) are observed in all the cases. Fig. 5 clearly demonstrates the
convergence of the results using the conforming quadratic elements for the composite BIE.

Fig. 6 shows the radiated waves when the sphere is pulsating with a uniform radial velocity v, on the surface
S and d¢p/dn = ikzyv,, with z, being the characteristic impedance. The magnitude of the normalized surface
pressure is plotted for wavenumbers ka = 0 to 7 with an increment of 0.1. With this small frequency increment,
the fictitious eigenfrequencies for the CBIE can be identified clearly at ka = w and 2, near which the CBIE
results deviate substantially from the analytical solution. The composite BIE, however, provides very
satisfactory and stable results throughout the range of the frequencies. Composite BIE results between ka = 4~6
are not as good as those using the CBIE, but can be improved significantly with a finer mesh (results are not
shown on the plot). The data (at 71 frequencies) for the composite BIE using 80 elements were obtained in less
than 10 minutes on a PC with a Pentium Pro 200 MHz processor and 64 Mb RAM.

The second study is for a cylindrical (capsule-like) body with radius = 1.0 m and total length = 7.0 m. Since
no analytical solutions are readily available for this problem, the commercial boundary element software
COMET/Acoustics is employed in the verification for the radiation problem. Analysis of scattering problems is
not available in COMET/Acoustics. The same mesh with 216 elements and 626 nodes (Fig. 7) is used for both
COMET/Acoustics and the developed composite BIE code.

For the scattering problem, the capsule is impinged upon by an incident wave ¢’ in the x-direction (Fig. 7).

0.25 § - ;
8 — Analytical Solution
&
- a Composite BIE, M=32
; 0.20 4 o Composite BIE, M=80
> o Composite BIE, M=153
% J
£
0.15 +
g T
2
3
D o104
0.05 +—+—+—+—+——t+——t————t—t————

o 20 40 60 80 100 120 140 160 180
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Fig. 4. A spherical body. Fig. 5. Scattering from the rigid sphere at r=S5a, ka=m;
composite BIE (8 = 0.3i).
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Fig. 6. Pressure on the surface of the pulsating sphere. Fig. 7. A cylindrical (capsule-like) body with radius = 1.0 m and

total length = 7.0 m.

Scattered waves for frequencies from 0 to 250 Hz (with 100 frequency steps), at the two points (—10, 0, 0)
(backscattering) and (0, 10,0) in the main axis direction, are plotted in Figs. 8 and 9, respectively. Four
fictitious eigenfrequencies of the CBIE near 134, 153, 185 and 224 Hz were identified by monitoring the
condition number of the system of equations at each frequency and the stability in the CBIE results. The
composite BIE provided stable and smooth results throughout the frequency range, with very low condition
numbers observed.

For the radiation problem (a pulsating capsule), a uniform normal velocity of unit magnitude is applied on the
whole surface of the cylinder. Radiated waves for frequencies from 0 to 250 Hz (with 100 frequency steps), at
the two points (10, 0, 0) in the lateral direction and (0, 10, 0) in the axis direction, are plotted in Figs. 10 and 11,
respectively. COMET direct BIE is based on the same conventional BIE formulation as the one used in this
research, and suffers from the same fictitious eigenfrequency difficulty (FED). The CHIEF method [1,50] is
used in COMET/Acoustics to overcome this difficulty. The CHIEF method uses the Helmhotz integral
representation at additional points inside the body (interior points) and solves a over-determined system of
equations [1,50]. It is well known that the success of the CHIEF method to overcome the FED is largely
determined by successful selections of the interior points, which are case-dependent and often difficult for
complicated structures. In this case, six interior points were placed along the axis of the cylinder for the COMET
CHIEF solution (one or two points were found to be insufficient). Figs. 10 and 11 show that both the results
using COMET direct BIE and the CBIE deteriorate near the four fictitious eigenfrequencies (134, 153, 185 and
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Fig. 8. Backscattering from the cylinder (with side incident wave).
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Fig. 9. Scattering from the cylinder in the main axis direction.
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Fig. 10. Radiated wave from the cylinder in the lateral direction. Fig. 11. Radiated wave from the cylinder in the main axis
direction.

224 Hz), while the results using COMET CHIEF and the composite BIE stay closely along a smooth curve, as
expected.

5. Conclusion

A new weakly-singular form, containing only the tangential derivatives of the density function, of the
hypersingular boundary integral equation for 3-D acoustic wave problems is presented in this paper. Conforming
C° quadratic boundary elements are employed in the discretization which is quite straightforward and does not
require any special numerical integration schemes beyond that used for the conventional BIE. Some
justifications on using C° elements for HBIEs are provided to reflect the current views on this crucial issue. It is
postulated that the original continuity requirement for the density function in the analytical HBIE formulation
can be relaxed to piecewise C'"* continuity in the numerical implementation of the weakly-singular forms of the
HBIE. Numerical examples, ranging from scattering and radiation problems from different geometries, clearly
demonstrate the effectiveness and efficiency of the improved composite BIE approach to 3-D acoustic problems.

Investigations on the composite BIE formulation for thin bodies with non-zero thickness, the interaction of
sound and shell-like structures, and the corner problem for the HBIE using conforming elements are underway
and will be reported subsequently.

Acknowledgment

The authors would like to thank Professors Frank Rizzo and Thomas Rudolphi at Iowa State University, and
the reviewers for their comments and suggestions to this manuscript. The research startup fund and University
Research Council support to the first author (YJL) from the University of Cincinnati are gratefully
acknowledged. The license of the software COMET/Acoustics provided by Automated Analysis Corporation
and used for the numerical studies in this paper is also acknowledged.

References

[1] H.A. Schenck, Improved integral formulation for acoustic radiation problems, J. Acoust. Soc. Am. 44 (1968) 41-58.

[2] REE. Kleinman and G.F. Roach, Boundary integral equations for the three-dimensional Helmholtz equation, SIAM Rev. 16 (1974)
214-236.



Y.J. Liu, S. Chen | Comput. Methods Appl. Mech. Engrg. 173 (1999) 375-386 385

[3] A.]. Burton and G.F. Miller, The application of integral equation methods to the numerical solution of some exterior boundary-value
problems, Proc. R. Soc. Lond. A 323 (1971) 201-210.

[4] W.L. Meyer, W.A. Bell, B.T. Zinn and M.P. Stallybrass, Boundary integral solutions of three dimensional acoustic radiation problems,
J. Sound Vib. 59 (1978) 245-262.

[5] W.L. Meyer, W.A. Bell, M.P. Stallybrass and B.T. Zinn, Prediction of the sound field radiated from axisymmetric surfaces, J. Acoust.
Soc. Am. 65 (1979) 631-638.

[6] T. Terai, On calculation of sound fields around three dimensional objects by integral equation methods, J. Sound Vib. 69 (1980)
71-100.

[7] Z. Reut, Numerical solution of scattering problems by integral equation methods, in: G. F. Roach, ed., University of Strathclyde
Seminars in Applied Mathematical Analysis: Vibration Theory (Shiva Publishing Limited, 1982) 105-112.

[8] Z. Reut, On the boundary integral methods for the exterior acoustic problem (Letter to the Editor), J. Sound Vib. 103 (1985) 297-298.

[9] LC. Mathews, Numerical techniques for three-dimensional steady-state fluid-structure interaction, J. Acoust. Soc. Am. 79 (1986)
1317-1325.

[10] W. Tobocman, Extension of the Helmholtz integral equation method to shorter wavelengths, J. Acoust. Soc. Am. 80 (1986)
1828-1837.

{11] C.-H. Lee and P.D. Sclavounos, Removing the irregular frequencies from integral equations in wave-body interactions, J. Fluid Mech.
207 (1989) 393-418.

{12] C.C. Chien, H. Rajiyah, and S.N. Atluri, An effective method for solving the hypersingular integral equations in 3-D acoustics, J.
Acoust. Soc. Am. 88 (1990) 918-937.

[13] T.W.Wu, AF. Seybert and G.C. Wan, On the numerical implementation of a Cauchy principal value integral to insure a unique solution
for acoustic radiation and scattering, J. Acoust. Soc. Am. 90 (1991) 554-560.

[14] Y.J. Liu and F.J. Rizzo, A weakly-singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave
problems, Comput. Methods Appl. Mech. Engrg. 96 (1992) 271-287.

[15] D.S. Jones, An exterior problem in elastodynamics, Math. Proc. Camb. Phil. Soc. 96 (1984) 173-182.

[16] D.S. Jones, Boundary Integrals in elastodynamics, IMA J. Appl. Math. 34 (1985) 83-97.

[17] Y.J. Liu and F.J. Rizzo, Hypersingular boundary integral equations for radiation and scattering of elastic waves in three dimensions,
Comput. Methods Appl. Mech. Engrg. 107 (1993) 131-144.

[18] R. Martinez, The thin-shape breakdown (TSB) of the Helmholtz integral equation, J. Acoust. Soc. Am. 90 (1991) 2728-2738.

[19] G. Krishnasamy, F.J. Rizzo and Y.J. Liu, Scattering of acoustic and elastic waves by crack-like objects: the role of hypersingular
integral equations, in: D.O. Thompson and D.E. Chimenti, eds., Review of Progress in Quantitative Nondestructive Evaluation (Plenum
Press, Brunswick, Maine, 1991).

{20] G. Krishnasamy, F.J. Rizzo, and Y.J. Liu, Boundary integral equations for thin bodies, Int. J. Numer. Methods Engrg. 37 (1994)
107-121.

[21] Y.J. Liu and F.J. Rizzo, Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral
equation formulation, J. Acoust. Soc. Am. 102 (2) (1997) 926-932.

[22] G. Krishnasamy, F.J. Rizzo, and T.J. Rudolphi, Hypersingular boundary integral equations: their occurrence, interpretation,
regularization and computation, in: P.K. Banerjee et al., eds., Developments in Boundary Element Methods, Chap. 7 (Elsevier Applied
Science Publishers, London, 1991).

[23] M. Tanaka, V. Sladek and J. Sladek, Regularization techniques applied to boundary element methods, Appl. Mech. Rev. 47 (1994)
457-499.

[24] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Yale University Press, New Haven, CT, 1923).

[25] P.A. Martin and F.J. Rizzo, On the boundary integral equations for crack problems, Proc. Roy. Soc. Lond. A. 421 (1989) 341-355.

[26] P.A. Martin, F.J. Rizzo and LR. Gonsalves, On hypersingular boundary integral equations for certain problems in mechanics, Mech.
Res. Commun. 16 (1989) 65-71.

[27] G. Krishnasamy, F.J. Rizzo and T.J. Rudolphi, Continuity requirements for density functions in the boundary integral equation method,
Comput. Mech. 9 (1992) 267-284.

[28] P.A. Martin and F.J. Rizzo, Hypersingular integrals: how smooth must the density be?, Int. J. Numer. Methods Engrg. 39 (1996)
687-704.

[29] G. Krishnasamy, T.J. Rudolphi, L.W. Schmerr and F.J. Rizzo, Hypersingular boundary integral equations: some applications in acoustic
and elastic wave scattering, J. Appl. Mech. 57 (1990) 404-414.

[30] G. Krishnasamy, F.J. Rizzo and Y.J. Liu, Some advances in boundary integral methods for wave-scattering from cracks, Acta
Mechanica [Suppl] 3 (1992) 55-65.

[31] W.S. Hall and T.T. Hibbs, The treatment of singularities and the application of the overhauser C*" continuous quadrilateral boundary
element to three dimensional elastostatics, in: T.A. Cruse, ed., Advanced Boundary Element Methods (Springer-Verlag, Berlin-
Heidelberg, 1987).

[32] W.S. Hall and T.T. Hibbs, C'"" continuous, quadrilateral and triangular surface patches, in: C. Creasy and M. Giles, eds., Applied
Surface Modelling (Ellis Horwood, New York, 1990).

[33] Y.J. Liu and F.J. Rizzo, Application of Overhauser C*'” continuous boundary elements to ‘hypersingular’ BIE for 3-D acoustic wave
problems, in: C.A. Brebbia and G.S. Gipson, eds., Boundary Elements XIII (Computation Mechanics Publications, Tulsa, OK, 1991)
957-966.

[34] L.J. Gray and C.S. Soucie, A Hermite interpolation algorithm for hypersingular boundary integrals, Int. J. Numer. Methods Engrg. 36
(1993) 2357-2367.

(35] L.J. Gray, A note on Overhauser elements, BE Communications 5 (1994) 62-65.



386 Y.J. Liu, S. Chen | Comput. Methods Appl. Mech. Engrg. 173 (1999) 375-386

[36] Q. Huang and T.A. Cruse, On the non-singular traction-BIE in elasticity, Int. J. Numer. Methods Engrg. 37 (1994) 2041-2072.

[37] T.A. Cruse and J.D. Richardson, Non-singular Somigliana stress identities in elasticity, Int. J. Numer. Methods Engrg. 39 (1996)
3273-3304.

[38] J.D. Richardson, T.A. Cruse and Q. Huang, On the validity of conforming BEM algorithms for hypersingular boundary integral
equations, Comput. Mech. 20 (1997) 213-220.

[39] P.A. Martin, F.J. Rizzo and T.A. Cruse, Smoothness-relaxation strategies for singular and hypersingular integral equations, Int. J.
Numer. Methods Engrg. 42 (1998) 885-906.

[40] AF. Seybert, B. Soenarko, F.J. Rizzo and D.J. Shippy, An advanced computational method for radiation and scattering of acoustic
waves in three dimensions, J. Acoust. Soc. Am. 77 (1985) 362-368.

[41] T.J. Rudolphi, The use of simple solutions in the regularization of hypersingular boundary integral equations, Math. Comput. Model.
15 (1991) 269-278.

[42] Y.J. Liu and T.J. Rudolphi, Some identities for fundamental solutions and their applications to weakly-singular boundary element
formulations, Engrg. Anal. Boundary Elem. 8 (1991) 301-311.

[43] R. Kress, Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering, Guart. J. Mech.
Appl. Math. 38 (1985) 323-341.

[44] S. Amini, On the choice of the coupling parameter in boundary integral formulations of the exterior acoustic problem, Appl. Anal. 35
(1990) 75-92.

[45] L. Demkowicz and J.T. Oden, Application of #p-adaptive BE/FE methods to elastic scattering, Comput. Methods Appl. Mech. Engrg.
133 (1996) 287-317.

[46] PR. Johnston, C’-continuous elements for boundary element analysis, Int. J. Numer. Methods Engrg. 40 (1997) 2087-2108.

[47] T. A. Cruse and W. Suwito, On the Somigliana stress identity in elasticity, Comput. Mech. 11 (1993) 1-10.

[48] G.F. Carey and J.T. Oden, Finite Elements: A Second Course, Vol. II (Prentice-Hall, Englewood Cliffs, NJ, 1983).

[49] E. Skudrzyk, The Foundation of Acoustics, Chap. 20 (Springer-Verlag, New York, 1971).

[50] AF. Seybert and T.K. Rengarajan, The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral
equations, J. Acoust. Soc. Am. 81 (1987) 1299-1306.



