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ABSTRACT

In this paper, the Boundary Element Method (BEM) for 3-D elastostatic problems is studied for the analysis
of shell or shell-like structures. It is shown that the conventional boundary integral equation (CBIE) for 3-D
elasticity does not degenerate when applied to shell-like structures, contrary to the case when it is applied to
crack-like problems where it does degenerate due to the closeness of the two crack surfaces. The treatment of
the nearly singular integrals, which is a crucial step in the applications of BIEs to thin shapes, is presented
in detail. To verify the theory, numerical examples of spherical and ellipsoidal vessels are presented using
the BEM approach developed in this paper. It is found that the system of equations using the CBIE
is well conditioned for all the thickness studied for the vessels. The advantages, disadvantages and
potential applications of the proposed BEM approach to shell-like structures, as compared with the
FEM regarding modelling and accuracy, are discussed in the last section. Applications of this BEM
approach to shell-like structures with non-uniform thickness, stiffeners and layers will be reported in
a subsequent paper. ( 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Accurate and reliable numerical analysis of plate and shell structures has been one of the
challenging tasks for the computational mechanics. The Finite Element Method (FEM) has been
a successful tool for the analysis of plate and shell structures in most applications. FEM is
versatile and widely applied in engineering in the analysis of plate and shell structures. However,
plate and shell theories are based on various assumptions about the geometry, loading and
deformation of the structure. The plate or shell finite elements based on these theories, therefore,
have many limitations in applications, such as numerical locking, edge effect, length scaling and
especially the convergence problem (the FEM may not converge or converge to wrong answers
under certain conditions), see, e.g. References 1—4. A great deal of research effort has been made in
the last three decades in the FEM plate and shell analysis, to adjust the various assumptions in
the theories, to improve the accuracy by using higher-order elements, to take account of more
complex geometry of real structures, and so on. Still, the FEM modelling and analysis of shell-like
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structures in engineering applications are very delicate and demanding. It is often difficult, and
even impractical, for structural analysis engineers to distinguish among thin shell, thick shell and
3-D elasticity models, and then choose the right type of finite elements accordingly in the analyses
of a complicated structure. This is especially true during the structure design process when the
dimensions (e.g. thickness) of a complicated structure endure changes from one design iteration to
another.

The Boundary Element Method (BEM) for the analysis of plates and shells has been investi-
gated intensively for both linear and non-linear problems for the last two decades (see, e.g.
References 5—8 on plates, and a comprehensive review on shells9 and the references therein). As in
the case of the finite element method, these BEM formulations of plate and shell problems are
based on the various plate and shell theories as well. Therefore, their applications are limited to
cases of simple geometry or loading conditions. For example, the thickness of the plate or shell in
these BEM models is required, in general, to be uniform. The fundamental solutions that are
essential to the BEM are not readily available for some complicated shell structures. Another
important factor is that BEM based on plate and shell theories uses 1-D (line) elements on
the edges of the plate or shell. This is an advantage regarding the dimension reduction of the
problems, but makes it difficult to couple with other BEM equations, which are discretized on the
surfaces of structures, e.g. in the analyses of fluid—structure interactions.

In view of the above observations, it is advantageous and certainly on a solid theoretical
ground to turn to 3-D elasticity theory in building numerical models for plate- and shell-like
structures. With the rapid increase of the computing power, this is feasible now and may be the
preferred method in the future for solving plate- and shell-like problems, at least when high
accuracy is demanded, as discussed in Reference 2. Because of its features of the surface
discretization and high accuracy, the BEM is in general preferred to the FEM in the realm of 3-D
structural analysis, especially for the stress analysis. All these considerations prompted the study
of using the BEM based on 3-D elasticity theory in the analysis of shell-like structures.

There are two major difficulties when the commonly used boundary integral equations (BIEs)
are applied directly to thin-body problems (including thin voids or open cracks, thin shell-like
structures and thin layered structures), where two parts of the boundary become close to each
other; see References 10 and 11. One difficulty is the degeneracy of the linear systems of equations
generated from the BIEs. The other is the difficulty of nearly singular integrals which arise in such
problems. Because of these two difficulties, for a long time the BEM has been considered not
suitable for thin-body problems. Recent progresses in References 10—14 have shown that the two
difficulties can be overcome readily with some analytical effort. In Reference 10, the BIE
formulations for thin body problems, specifically, for thin (rigid and soft) inclusions in acoustic
medium, are constructed using a combination of the conventional BIE (CBIE) and the hypersin-
gular BIE—the derivative of the CBIE. It is shown that this combined BIE formulation for the
exterior domain will not degenerate no matter how thin the inclusions are. This is a general
approach and can provide stable BIE formulations for the analysis of thin-body problems. An
application of this approach to the scattering of elastic waves from open cracks is discussed in
Reference 15. However, all these research efforts have focused on the degeneracy issue of the BIE
for exterior type of problems, such as thin inclusions, voids or open cracks in structures. Whether
the CBIE will degenerate or not for interior-type problems, such as thin shell-like structures, is not
clear and has not been addressed in the BEM literature.

In this paper, it is established that the conventional BIE formulation for 3-D elasticity
problems will not degenerate when applied to shell-like structures, contrary to the case when it is
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applied to crack-like problems where it does degenerate, due to the closeness of the two surfaces
in the structures. This assertion will be verified both analytically and numerically. A careful
analysis of the limiting process as the two surfaces approaching each other reveals that the two
equations from the CBIE collocated on the two surfaces are independent for shell-like structures,
while dependent for crack-like problems (which is well known in the BEM literature). The
treatment of the nearly singular integrals in the CBIE for 3-D elastostatic problems is presented
in detail using a line integral approach. For the numerical verification of the theory, two test
problems using a spherical and an ellipsoidal vessels are studied applying the BEM approach. It
is found that the system of equations using the CBIE is well conditioned (thus non-degenerate) for
all the values of thickness studied for the vessels. The advantages, disadvantages and potential
applications of the proposed BEM approach to shell-like structures, as compared with the FEM
regarding modelling efficiency and analysis accuracy, are discussed in the last section. Applica-
tions of this BEM approach to shell-like structures with non-uniform thickness, stiffeners and
layers will be reported in a subsequent paper.

2. NON-DEGENERACY OF THE CONVENTIONAL BIE FOR
SHELL-LIKE STRUCTURES

Consider the following conventional boundary integral equation (CBIE) for 3-D elastostatic
problems [16—18] (index notation is used in this paper),
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and traction kernels (Kelvin’s solution), respectively, P the field point, P
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the source point and
S the boundary surface of the structure. Sufficient smoothness of S at the source point P

o
is

assumed in equation (1), otherwise the coefficient 1
2

will be replaced by a different number. CBIE
(1) contains a singular integral of the Cauchy principle value (CPV) type, which, in general,
demands delicate numerical quadratures. This CPV integral, however, can be removed from the
CBIE by recasting it in a weakly singular form which should be used for the discretization of the
CBIE (see e.g. References 18—21). The singular form of the CBIE, as given by equation (1), is only
used in this paper for the purpose of discussion of the degeneracy of the CBIE for thin shapes.

To simplify the discussion hereafter, the following integral operator notation is introduced:
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)[f] dS, D[f]"P
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T(P, P
o
)[f] dS (2)

where U"[º
ij
] and T"[¹

ij
] are two 3]3 matrices for the kernels. Notice that the two

integrals represented in (2) are corresponding to the single-layer and double-layer integrals,
respectively, in the classical potential theory. Equation (1) can be, therefore, written as

1
2
u"Bt!Du (3)

where u and t are the displacement and traction vectors, respectively.
Without loss of generality, assume that S is the boundary of a thin shape in the structure (e.g.

a void or a shell-like structure) and S"S`XS~, with S` and S~being the two separate surfaces
for the thin shape and h a characteristic thickness of the thin shape; see Figure 1. Then equation
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Figure 1. The boundary S of a thin shape: S"S`#S~

(1) or (3) can be rewritten as follows, according to the position of the source point P
o
:
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where the superscripts for the u and t vectors indicate the surface (S`or S~) on which they are
evaluated; superscripts for the two integral operators B and D indicate the location of P
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and the

subscripts indicate the surface of integration. For example,
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It is well known that the CBIE (1) will degenerate for crack problems, i.e. the equation
generated on one surface of a crack will be identical to that generated on the opposite surface (see,
e.g. References 10 and 22). CBIE alone is, therefore, insufficient in solving crack or crack-like
problems in a general setting. However, whether CBIE will degenerate or not for thin shell-like
structures is not clear in the BEM literature. The general consensus in the BEM community is
that the CBIE, if not all types of BIEs, should not be applied to thin bodies or shell-like structures,
due to the (possible) degeneracy of the CBIE formulation and the difficulty of dealing with the
nearly singular integrals encountered in thin-body problems. In this section, the issue of degener-
acy of the CBIE for crack-like problems is revisited, followed by an investigation of the
degeneracy of the CBIE for shell-like problems. The nearly singular integrals will be discussed in
detail in the next section.

To study the behaviour of the CBIE when the thickness h of a thin shape approaches zero
(Figure 1), it is necessary to consider the two cases (crack-like or shell-like problems) separately,
which demonstrate totally different characteristics regarding the degeneracy of the CBIE.

2.1. Case 1. Exterior-like problem

In this case, the material or problem domain is outside of the surface S"S`XS~, and the
outward normal (n` on S` and n~ on S~) is pointing in the way as shown in Figure 2. Voids or
open cracks in structures are some examples in this case.
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Figure 2. The boundary and normal for an exterior problem (a void or crack in solids)

In the limit that S~ tends to S`, or equivalently, h tends to zero (Figures 1 and 2), the following
limits of the integrals in (4) and (5) exit:
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This leads to the first result in (7). Notice that D`u~ is a CPV-type integral after the limit has been
taken.

Considering the limit as hP0 for equations (4) and (5), and applying the results in (6) and (7),
one has the following two limiting equations generated by placing P

o
on S` and S~, respectively,
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The above two equations are identical and can be written as

D`*u#1
2
&u"B`&t (8)

where *u"u`!u~, &u"u`#u~, and &t"t`#t~. This reveals that the CBIE for crack or
crack-like problems is degenerate due to the fact that the two equations from both sides of the
crack are reduced to one. The remaining equation after the limiting process, i.e. equation (8), is
insufficient in determining all the unknowns (&u and *u across the crack, or u on the two
surfaces). The remedy to this degeneracy is either to avoid it by using the multi-region BIE
approach22 in some cases or to employ the hypersingular BIEs.10,15,23~25

2.2. Case 2. Interior-like problem

In this case, the material or problem domain is inside of the surface S"S`XS~, and the
outward normal is pointing in the way as shown in Figure 3. Shells or shell-like structures are
some examples in this case.

In the limit that S~ tends to S`, or h tends to zero (Figures 1 and 3), one can obtain the
following limits of the integrals in (4) and (5):
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where, as earlier, B`,B`
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, and I is the identity operator. The limits in (9) are the same

as in (6) since the º
ij

kernel is not related to the normal. The limits in (10) are different from their
corresponding limits in (7) only in the sign of the jump terms, which is due to the change of the
direction of the normal. For interior-like problems, the direction of the normal of the integration
surface is pointing to the same direction in which P

o
is approaching to this surface.

Considering the limit as hP0 in equations (4) and (5), and applying the results in (9) and (10),
one has the following two limiting equations for the interior-like regions:
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Figure 3. The boundary and normal for an interior problem (shell-like structures)
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Equations (11) and (12) are two distinct or linearly independent equations which can be
combined in the following matrix form involving the original boundary variables u and t:

C
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In theory, equation (13) will degenerate if the displacement boundary condition is imposed
everywhere, which leads to the situation of solving for the unknown traction t using the matrix on
the right-hand side of (13). For example, if u`"u~"u6 everywhere, then *u"0, and equations
(11) and (12) will become identical, hence equation (13) or CBIE is degenerate. Another situation
is that the thickness h of the shell or shell-like structure is approaching zero which leads to
u`"u~ and hence *u"0. However, both of these scenarios are unlikely to happen in real
structural analysis problems. In a general stress analysis problem, the displacements are described
on only part of the boundary and forces on the remaining part. The coefficient matrix for the
unknowns is a mix of the matrices on both sides of equations (11) and (12). This arrangement
makes the two equations remain distinctive from each other. On the other hand, as long as the
thickness h of the shell or shell-like structure is finite, and u# and u~ are identified as independent
variables, the characteristics of equation (13) will not change. In the case that h tends to zero, the
fact that u# should approach u! will come out of the solution of equation (13). The equation
itself remains solvable in this case. Notice that for inclusion problems, such as shells surrounded
by another media or thin layers in different materials, equation (13) is well-conditioned since in
this case both u and t are unknowns. The non-degeneracy of the CBIE for an interior region in
inclusion problems has been demonstrated in Reference 10 in the context of acoustic wave
problems.

Based on the above analysis and justification, it is concluded that the CBIE will not degenerate
for the analysis of shell or shell-like structures, if the structures are not constrained at all the
boundaries (as they are in almost all the engineering applications). This is in contrast to the cases
of crack or crack-like problems where the CBIE does degenerate. The remaining concerns with
the applications of the CBIE to shell or shell-like structures are how to deal with the nearly
singular integrals arising in such applications and what the advantages are when this BEM
approach is compared with the finite element method. These issues are addressed in the following
sections.

3. TREATMENT OF THE NEARLY SINGULAR INTEGRALS

In order to apply the CBIE (1) to shell-like structures, one has to overcome the difficulty of near
singularity which arise when collocation point (source point P

o
) is on one surface of the thin

shell-like structure and integration need to be performed on the other nearby surface. Many
numerical schemes for computing the nearly singular integrals can be found in the literature of the
boundary element method, such as numerical integration with subdivisions, kernel cancellation
method and the auxiliary surface method (see e.g. Reference 13 for a brief review). Among all the
available methods, the line integral approach, i.e. transforming the nearly singular integral into
a sum of weakly singular integrals and non-singular line integrals, seems to be one effective and
efficient approach.10,13 It is the method adopted and implemented in this study.

A typical nearly singular integral in equation (1) (CBIE) is the one with the stress kernel
function ¹

ij
and integrated on a surface *S with source point P

o
nearby (Figure 4). Here *S can
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Figure 4. Source point P
o

near the surface *S of integration

be one element or several elements on the surface S. This nearly singular integral can be dealt with
by adding and subtracting a term in the following manner:
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where P@
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is the closest point on *S to P
o

(an image point of P
o

on *S); see Figure 4. The first
integral is now at most nearly weakly singular and can be computed using the conventional
quadratures. The last integral in (14) can be transformed into line integrals as follows by using the
Stokes’ theorem:13
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where C is the boundary curve of *S, r"DP
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PD, l the Poisson’s ratio, e
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the permutation tensor
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is a solid angle integral (G"1/4nr is the Green’s function for potential problems). This surface
integral can also be evaluated using a line integral. This needs more explanation that is not
furnished in Reference 13.

Consider a local co-ordinate system Oxyz with the origin at the source point P
o
and oriented in

such a way that #z-axis passes through the surface *S; see Figure 5. Introducing the spherical
co-ordinates (r, h, u), one can write the projection of the differential area dS on the sphere of
radius r as

(rL · nL ) dS"r2sin u du dh

where rL is a unit vector along the r direction and nL a unit vector along the normal direction. Since
Lr/Ln"(rL · nL ), the solid angle integral can be evaluated as follows:
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Figure 5. The solid angle integral

Figure 6. Geometry on the edge

where '(h) is the value of u evaluated at the edge of *S. This is a 1-D integral with integrand
evaluated on the contour C. Notice that if *S is a semi-sphere with its edge resting on the xy
plane, then the solid angle integral is !1

2
by using (16), which is the number one finds in the BEM

literature. To further convert the integral in (16) into an explicit form of line integrals, refer to
Figure 6 and note the following relationships:

o dh"(oL · l̂) (t̂ · ĝ) d¸ and cos '(h)"
Z(h)

R(h)

where R and Z are the two spherical co-ordinates of the point P on contour C, q the projection
vector of R on the xy-plane, oL the unit vector along q; tL and gL are the (unit) tangential vectors of
the contour C and the projection curve of C on xy-plane, respectively, and finally, lL"gL ]zL with
zL being a unit vector along the z-axis. Thus, (16) can be converted readily into a line integral on
contour C

I) (P
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d¸ (17)

ANALYSIS OF SHELL-LIKE STRUCTURE 549

( 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 41, 541—558 (1998)



All the line integrals in (15) and (17) are non-singular at all since the source point P
o
is always off

the contour C. This line integral approach for dealing with the nearly singular integrals is very
efficient in computation. One does not need to use more elements in the model or subdivisions on
an element in order to handle these nearly singular integrals. It is found that the CPU time used
to compute the nearly singular integrals using this line integral approach is only a fraction of that
used for applying many subdivisions on the original surface elements, when the same accuracy is
achieved.

4. NUMERICAL VERIFICATION

To verify the theory on the non-degeneracy of the conventional BIE for thin shell-like structures,
two simple test problems are studied where the BEM solutions are compared with the exact
solution (if it is available) and the FEM solutions.

4.1. Test problem 1. A spherical vessel

First, a spherical shell-like vessel under internal pressure p shown in Figure 7 is studied. The
inner radius a of the vessel is constant in this study, while the outer radius b changes from 1·01a to
2a. This setup, therefore, provides a model of the spherical vessel which can be categorized as
a thin shell, a thick shell and eventually a bulky solid, according to the values of the ratio of b/a.

In the BEM model, both the inner and outer surfaces are discretized with 48 quadratic
boundary elements (a total of 96 elements), with each octant having six elements on one surface as
shown in Figure 8. Figure 9 shows the radial displacement at the inner surface using the BEM
without the line integrals for the nearly singular integrals. The BEM solutions deteriorate when
the two surfaces become closer (the ratio of b/a is below 1·1), as expected. The BEM results
improve dramatically when the line integrals are employed for the nearly singular integrals, as
shown in Figure 10. Figure 11 is a plot of the hoop (tangential) stress at the inner surface using the
BEM with line integrals, which is also in good agreement with the analytical solution. The system
of equations using the CBIE is well-conditioned even when the thickness of the shell is only 1&5
percent of the inner radius of the sphere (b/a "1·01&1·05). Earlier studies have shown that near
or below this range of the thinness for a thin shape, the CBIEs for a open crack or a rigid screen in
acoustic medium degenerate as indicated by a large condition number for the system of

Figure 7. A spherical vessel under internal pressure p (inner radius"a, outer radius"b, Poisson’s ratio l"0·3)
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Figure 8. Mesh pattern for the boundary element analysis (total of 96 boundary elements on the two surfaces)

Figure 9. BEM solution of the radial displacement without using the line integrals for nearly singular integrals

equations.10,15 In this study, however, further decrease of the shell thickness (to b/a "1·005)
does not show any sign of degeneracy of the system of equations. The condition numbers stay
below a few thousands. This simple example, therefore, supports the claim that the conventional
BIE does not degenerate for thin shell-like structures as long as the nearly singular integrals are
properly handled.

The finite element method is applied to this simple structure to investigate how the FEM
handles the transitions of the structure from thin shell to thick shell, and finally to bulky solid.
The mesh pattern in the first octant for the parabolic shell elements (6-node triangle and 8-node
quadrilateral) used is shown in Figure 12. This mesh gives the same total number of elements and
comparable accuracy as in BEM analysis. The second-order solid elements used have the same
pattern as the shell elements, with one or two layers of elements in the radial direction. Figure 13
is a comparison of the BEM and FEM for the stress calculation. In the FEM approach, the shell
model is applied when 1·01)b/a)1·1, while the solid model is used when 1·1)b/a)2·0. The
SDRC/I-DEAS Master Series/Simulation module is used for this finite element analysis. As shown
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Figure 10. BEM solution of the radial displacement using the line integrals for nearly singular integrals

Figure 11. BEM solution of the hoop stress using the line integrals for nearly singular integrals

Figure 12. Mesh pattern for the finite element analysis
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Figure 13. Comparison of the BEM and FEM (shell and solid elements) solutions for the hoop stress (]p)

in Figure 13, the FEM results are in very good agreement with the exact solution for this simple
problem. The only disadvantage of the FEM in this analysis is the need of different models (shell
and solid) and re-meshing in the solid model when the thickness of the vessel is changing
dramatically. On the other hand, in the BEM approach, only one model (BEM for 3-D elasticity)
is used and no need to re-mesh as the thickness changes.

4.2. Test problem 2. An ‘ellipsoidal vessel ’ with non-uniform thickness

In this test, the geometry of the spherical shell in the previous test is modified so that the outer
surface becomes an ellipsoid (short axis"c along the y-direction and long axis"d along the x-
and z-direction) and the inner surface remains a sphere (radius"a) (Figure 14). The ratio of d/a is
fixed at 1·2 while the ratio of c/a is changed from 1·05, 1·03 to 1·01. These are simple cases of
shell-like structures with non-uniform thickness, and present greater challenges to both the BEM
and FEM due to the rapid variations in the stress fields. No analytical solution is found for this
problem.

The hoop stresses at point A and point B (Figure 14) on the inner surface, using the BEM and
FEM, are given in Table I. The total numbers of elements used in each mesh (for the whole
structure) are listed in Table II for reference. Due to symmetry conditions, only one-eighth of the
whole structure is used in the FEM analysis. Mesh 1 for the BEM has the same mesh pattern as
shown in Figure 8, while Mesh 1 for the FEM has a similar mesh pattern to that shown in
Figure 12 and has two layers of second-order solid elements in the radial direction. FEM shell
elements are difficult to use for this problem, because of the non-uniform thickness. The meshes
for both BEM and FEM are oriented in such a way that no triangular elements are present near
points A and B to avoid possible spurious stress values on triangular elements. The BEM and
FEM results agree reasonably well for the first two cases (c/a "1·05 and 1·03) as the number of
elements increases. Results for the last case (c/a "1·01) are not converged at point A using both
BEM and FEM. It is found that in this extreme case the results are very sensitive to the meshes
used in the FEM because of the small thickness near point A. No finer mesh is attempted for this
case since further understanding of the behavior of such shell-like structures is deemed desirable.
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Figure 14. An ‘ellipsoidal vessel’ with non-uniform thickness and under internal pressure p (Poisson’s ratio l"0·3,
Young’s modulus E)

Table I. Hoop stresses in the ‘ellipsoidal vessel’ (]p). (d/a"1·2)

At point A At Point B
Ratio Mesh
c/a used BEM FEM BEM FEM

1 8·724 11·048 1·938 3·152
1·05 2 9·814 10·196 2·832 3·086

3 10·226 9·451 2·920 3·077

1 11·723 18·067 1·800 3·191
1·03 2 14·163 17·970 2·891 3·167

3 15·544 15·691 2·976 3·164

1 16·952 39·247 1·224 3·155
1·01 2 27·794 56·985 2·903 3·248

3 35·098 46·978 3·145 3·258

Table II. Total number of elements used in each
mesh

Mesh BEM FEM

1 96 192
2 192 768
3 384 5120

Note that stress results at point B are converged quickly and do not change significantly as the
ratio of c/a decreases, which agrees with the intuition.

As is shown by the results in Table I, more elements are needed in FEM in order to obtain the
accuracy and avoid very thin solid elements (with large aspect ratios) which can cause numerical
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instability in the FEM. On the other hand, this test problem does not present any new difficulties
in the modelling and analysis to the BEM approach, except for the fact that more elements are
needed to account for the increased variations of the stress fields.

The two examples studied in this section are very simple ones in shell structures. The purpose of
using these examples is to verify the non-degeneracy of the CBIE for shell-like structures. Studies
of more complicated shell or shell-like structures, such as shells with non-uniform thickness and
stiffeners, and layered shell structures, are underway. More delicate comparisons of the BEM and
FEM for the analysis of such structures will also be carried out. All these will be reported in
a subsequent paper.

5. DISCUSSIONS

The applicability of the conventional BIE for 3-D elasticity problems to the analysis of shell and
shell-like structures is investigated in this paper. It is shown that the CBIE, with proper treatment of
the nearly singular integrals, will not degenerate when it is applied to shell or shell-like structures,
contrary to the case of a crack or thin void in structures, for which the CBIE does degenerate. The
numerical verification using simple spherical and ‘ellipsoidal vessel’ models supports this assertion.
The remaining questions are: What are the advantages of this BEM approach to the shell or
shell-like structures? What are the potential applications of this approach?

Based on 3-D elasticity, the BEM approach presented in this paper can provide an alternative
tool for the analysis of shell-like structures. Instead of identifying parts of a structure as plates,
shells, or solids, this approach can treat the structure as a single elastic medium and model it
continuously without the need to switch to different models. The FEM modelling and analysis of
shell-like structures are very delicate and demanding in engineering practices. It is very difficult,
and sometimes even impractical, to distinguish among the thin shell, thick shell and 3-D solid
models and then to choose the finite element types accordingly. This is especially true during
a structure design process where the dimensions (e.g. thickness) of a complex structure may
change from one design iteration to another. Misuse of the plate and shell elements, in violations
of their various assumptions, occurs quite often in engineering applications and leads to erron-
eous results. The BEM approach presented in this paper, using a continuous modelling concept,
can eliminate all these hidden pitfalls in the applications and ensure simple modelling and
accurate analyses for shell-like structures.

The modelling of the structure using the BEM is as easy as the FEM modelling using shell
elements, since for the BEM only a surface mesh of the structure is needed. The BEM modelling
will be much easier than the FEM modelling if solid finite elements are used, even with the widely
available automatic meshing capabilities in various FEM packages. It was found that thin shapes
(such as turbine blades, thin shells attached to bulky solids, etc.) can present great challenges to
automatic meshers, which are often time-consuming and may provide undesirable mesh patterns
or densities. Although two surfaces need to be modelled for a shell-like structure using the BEM,
instead of one surface as in the FEM modelling using shell elements, less boundary elements can
be used on each surface for a comparable accuracy, as is demonstrated in the examples in the
previous section. On the other hand, each node in the BEM model has a fewer numbers of degree
of freedom (DOF), or unknowns, than the numbers of DOF in FEM shell models where each
node is associated with both translational and rotational DOFs. All these features of the BEM
approach make it very attractive to the modelling and analysis of shell-like structures, besides the
higher accuracy the BEM deliveries.
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The high accuracy of the boundary element method for stress analysis is well known, mainly
due to its semi-analytical nature and surface-only discretization. This high accuracy will be
retained in the analysis of shell-like structures using the BEM if the nearly singular integrals are
computed accurately. There is, however, one major drawback regarding the computational
efficiency of the proposed BEM approach. At present, the BEM is usually less efficient than the
FEM in 3-D structural analysis, i.e. it takes longer to run a boundary element analysis. This is, in
fact, a trade-off between human time and computer time, because significant manpower can be
saved during the modelling stage when BEM is used for 3-D structures. In the future, this concern
may become insignificant with the continued improvement in computer speeds. It is believed that
future computational tools should be built on more accurate and solid theoretical foundations
first, and the efficiency issues should be pursued later. Improvements in efficiency can always be
achieved with the advance of computer technology, while improvements in accuracy are always
limited by the theory on which the computational models are built.

Applications of the proposed BEM approach to shell-like structures can be found in many
areas where the FEM approaches using the shell or solid elements are inefficient or inaccurate.
Figure 15 shows the examples of some structures, such as thin-layered structures, turbine blades,
rudders and various containers. All of these structures are shell-like structures, but cannot be
analysed accurately using the traditional thin shell or thick shell finite elements. FEM using solid
elements is accurate for such structures, but the finite element mesh is difficult to generate as
discussed in the above. The proposed BEM approach is especially suited for the analysis of such
shell-like structures, to provide means of simple modelling and high accuracy. In the sound-
structure interaction area, the BEM is usually applied for the acoustic media and the FEM for the
structures which, in many cases, are shell-like structures such as the various panels for a car body.
Using the BEM approach for the structures can improve the accuracy and make a better coupling
of the BEM equations from the structures and fluids in a coupled analysis. (The characteristics of
FEM and BEM equations are drastically different, and a straightforward coupling of both is
often awkward.) Finally, for the shape optimization of structures, the BEM is very appealing
because of its boundary discretization nature and high accuracy in sensitivity analysis. The
developed BEM approach can form the basis for the shape optimization analysis of shell-like
structures.

Finally, it must be pointed out that the proposed BEM approach to shell-like structures should
be considered as a complement to the FEM in the structural analysis. For structures that can be
identified clearly as shells or bulky solids, the corresponding FEM should be used because of the
efficiency FEM delivers. For shell-like structures where the shell models are inadequate and the

Figure 15. Shell-like structures: (a) layered structure; (b) thin structure with varying thickness (a blade)
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solid models are difficult to obtain, the BEM approach can be used as an alternative, especially
when high accuracy is desired, as in benchmarks.
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