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1 Introduction men) concept are usually employed in micromechanics analysis,
Interphases, or interfacial zones, in fiber-reinforced comp03|l eWhICh the fibers are assumed to be infinitely long and packed in

; . . - a square or hexagonal pattefsee, e.9.[10,11,13). Although
?ﬁézga}lri;reh?:etshglréa% ?Ee%egﬁietgt?grlbf;gng nlfé?;ii; | reonl_y one fiber and the surrounding matrix are modeled in the unit
P ! e, G approach, the presence of the interphase between the fiber and

tions between the fiber and matrix materials, or the use of proteﬁétrix still makes the finite element method and boundary ele-

itlsvznﬁofgll%stgnretmofrlgsrtﬁgrrlr?gtrrizar?]lzﬂ:ﬁ%r:E%Hg?iiglrbgirr’e\clzvt?(l)c ent method modeling difficult, simply because of the thinness of
ploy: e interphases which are at the micrometer level or below.

is usually much stiffer than the matrix material. Different levels of Many finite element models based on the two-dimensional elas-

stresses and deformations can develop in the fiber and ma y theory have been developed to study the micromechanical

mat(_erlals, because of this m'sm?‘tCh in the ma_terlal properties. | IPoperties of fiber-reinforced composites under transverse loading
the interphases that bond the fiber and matrix together to ens with the presence of an interphase, for examplEl 306,14
the desired functionality of the composite material under extern d[8], and most recently if9]. In aI’I these finite élémént

loads. Although small in thickness, interphases can significan ethod models, a layer of very fine finite elements was used

affect the overall mechanical properties of th? fiber-reinforc tween the fiber and matrix to model the interphase. Because of
I(i:r?IT‘i)r?StltgzsioEias dObZﬁ:Vzdnljn ::T:)?]nsé sﬂﬁfﬁ&ﬂzé);'?;:;Sr(‘;vse?rlﬁisgethe thinness of the interphase, a large number of small finite ele-
reinforced compopsite’s such as dgbondi)ag fiber pullout, and Fm_ants are need_ed in these models,_ in order to e_1v0|d elements with
trix cracking, occur in,or near this region lThus it i cr’ucial {ngrge_ aspect ratios which can deteriorate the finite element m_ethod
fully underst:emd the mechanism and effeéts of t’he interphase %olutlons. Thls-’ n tu.rn, causes a large number O-f .element.s in the
. . . . ) Silfer and matrix regions because of the connectivity requirement
fiber-reinforced composites. Numerical techniques such as the

. _~in the finite element method. For instance[®), more than 3500
hite element m‘?thOd apd thg boundary element method are 'n(hﬁl'te elements were used to model owlye quarterof the chosen
pensable tools in serving this purpose.

; - ) s . ._unit cell. With further smaller thickness of the interphase as com-
Numerical modeling of fiber-reinforced composite material

ared with the diameter of the fiber, or nonuniform thickness,

presents great challenges to bOt.h the finite elemgnt methoq \/tj—zn more elements will be needed in the finite element method
boundary element method especially for the analysis at the MICHRHdel. Thus, using finite elements based on the elasticity theory

structural level. The main issue in the micromechanics analysis @t modeling of interphases can be costly and inefficient.

fiber-reinforced composites is to predict the interface stresses Ofrhe boundary element method has been demonstrated to be a
Surabllltyh ass?t?sm?fnt,t_andYto de’termlr:je |Fh|ea e_ngln?erlntg PrORGLbIe alternative to the finite element method due to its features
1es, such as the efiective roungs modull, Folsson's ratios, a boundary-only discretization and high accuracy in stress analy-
thermal expansion coefficients needed for structural analysis. | &s especially in fracture analysisee, e.g.[15—18). For the
alized models using the unit cefor representative volume ele- analysis of micromechanical behaviors of fiber-reinforced com-
— posites using the boundary element method, there are very few
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Interphases, as in fiber-reinforced composites, are thin shell-
like structures. For this class of structures, there have been two
major concerns in applying the boundary element method. The
first concern is whether or not the conventional boundary integral
equation for elasticity can be applied successfully to thin struc-
tures. It is well known in the boundary integral equation/boundary
. fiber element method literature that the conventional boundary integral
equation will degenerate when it is applied to cracks or thin voids
in structures because of the closeness of the two crack surfaces
(see, e.g.j16] and[22]). One of the remedies to such degeneracy
in the conventional boundary integral equation for crack-like
problems(exterior-like problems, is to employ the hypersingular
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boundary integral equatiofsee, e.g.[18,23—-25). Does this de-
a unit cell x interphase generacy occur when the conventional boundary integral equation
—— is applied to thin structure@nterior-like problems, such as thin

/

e e

shells? It was not clear in the boundary element method literature
and the boundary element method based on elasticity had been
avoided in analyzing thin shell-like structures for a long time due
Fig. 1 The interphase in a fiber-reinforced composite to this concern. Recently, it was shown [ig86] and [27], both
analytically and numerically, that the conventional boundary inte-
gral equation will not degenerate, contrary to the case of crack-

a square unit cell using the boundary element method. To stu'dsﬁ problems, when it is applle_o_l to thin sheII-I|I_<e structures if the
the effect of the interphase, the continuity of the tractions acrodiplacement boundary conditions are not imposed at all the
the interface of fiber and matrix is maintained, while a linedpoundaries. Further discussions on this nondegeneracy issue for
relation between the displacement differences and the tractidhg boundary element method applied to shell-like structures can
across the interface is introduced. This simple relation representeéafound in[26] and[28]. Based on these new results, the degen-
spring-like model of the interphase. The proportionality constangsacy issue should no longer be a concern when the conventional
used in this model characterize the stiffness of the interphag@undary integral equation is applied to thin structures, once the
Based on this model, it was shown that the variations of the isecond concern, that is, the numerical difficulty is addressed.
terphase parameters can cause pronounced changes in the strégse numerical difficulty in the boundary integral equation is the
distributions in the fiber and matrix. The initiation, propagatiomearly singular integrals which arise in thin structures when two
and arrest of the interface cracks were also analyzed. The sgpaets of the boundary become close to each other. Detailed studies
approach to the interphase modeling was extend¢d]ito study on the behaviors of the nearly singular integrals and comprehen-
hexagonal-array fiber composites, and 4} to study the micro- sive reviews of the earlier work in this regard can be foun®sj
mechanical behaviors of a cluster of fibers. Oshima and Watafid [30]. One of the most efficient and accurate approaches to
[19] calculated the transverse effective Young's modulus usingggal with the nearly singular integrals in the boundary element
two-dimensional boundary element method for a square unit celethod for three-dimensional problems is to transform tiisse
model. No interphase was modeled and perfect bonding betwagBe integrals to line integrals analytically before the numerical
the fiber and the matrix was assumed. Nevertheless, the boundgf¥gration([22,26,31). A similar approach can be established for
glement method results using constant'elements were shqwn ta\bS-dimensional elasticity problem@27]). It has been demon-

in very good agreement with the experimental data. Gulrajani a8fated in[27] that very accurate numerical solutions can be ob-
Mukherjee[20] studied the sensitivities and optimal design ofained for thin structures with the thickness-to-length ratio in the

composites with a hexagonal array of fibers. A two-dimensiong{icrq and even nanoscales, using the newly developed boundary
boundary element method model with the same spring-like intggj,

. e ement method approach, without seeking refinement of the
phase model as if2] was used. The sensitivities of stresses at tr}ﬁ shes as the thiclfr?ess decreases 9
interphase were calculated and employed to optimize the value o )

the stiffness of an interphase in order to minimize the possibili nce the degeneracy issue for the conventional boundary inte-
> P P . Z%ral equation in thin structure problems has been clarified and the
of failure of a composite. Most recently, Pan, Adams, and Riz

o It ; early singular integrals can be dealt with accurately and effi-
[21] developed a similar two-dimensional boundary GIerne'It;:]tlently, it is believed that the boundary element method can now

reinforced composites. A main component in this research was ffigulations of thin shell-like structuref26]) thin-film, and coat-
development of a library of Green's functiorier matrices of N9S in the micro or nanoscaléf27]) and in particular, the inter-
boundary element method equatipngor analyzing fiber- Phases in fiber-reinforced composite materials. ,
reinforced composite materials, which can be used by engineers ji" this paper, detailed two-dimensional models for the inter-
the design of such composites. Although successful to some @hases in flber-relnforc(_ad_ composite materlals_ haye been de_vel-
tent, all the above boundary element method models of the ufRed based on the elasticity theory to study their micromechanical
cells for fiber-reinforced composites with the spring-like interbehaviors under transverse loading. All the regions—the fiber,
phase relations are incapable of providing other important infoiatrix, and interfacial zone contained in a unit cell, are modeled
mation about the properties of composites, such as effects Using the advanced two-dimensional boundary element method
changes of the thickness and nonuniform distribution of the intetith thin-body capabilities[27]) and extended to multidomain
phases. Furthermore, in order to avoid overlapping of the fiber ag@ses. The interphases can have uniform thickness of any arbi-
matrix in the spring-like model, an iteration approach is needed.trarily small values or nonuniform thickness. Interface stresses in
trial calculation needs to be done first to check the sign of tibe interphases and effective elastic moduli in the transverse di-
normal traction at the interface. If the spring is in compressiorections are computed using this approach. This two-dimensional
continuity of the normal displacement is resumed and the boungodel of the interphases can provide more accurate interface
ary element method is applied again. This procedure is inefficiestresses and therefore a more accurate account on the microme-
and can be costly. An improved boundary element method moddlanical behaviors of fiber-reinforced composites than the current
of the interphases based on elasticity theory is desirable. spring-like models in the boundary element method literature.
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2 The Boundary Element Method Formulation ([32,33), before doing any numerical work. However, when the
structure becomes thin in shape, such as the interphase shown in

e oo 2, 10,2 oth el n Ex ) ar il o sl with e e
. g Y gral €q . i source point is on one side and the integration is carried out on the
ity problems can be applied in each material don{adex nota-

R S ' Lo ther side of the thin structure. These types of integrals are called
tion is used in this section, where repeated subscripts imply su(F:ha'arly singular integrals since the distamcs very small in this

mation): case but is still not zero. Most techniques for dealing with the
(8 8 8) 8 singular integrals do not work for nearly singular integrals and
Cij(Pou”(Po)=| [Ui(P,Po)t;”(P)=Ti(P,Pq) special attention is needed. Recently, several techniques, includ-
S ing singularity subtractions, analytical integration, and nonlinear
Xu}‘”(P)]dS(P), (1) coordinate transformations have been developed for the two-

dimensional elasticity boundary integral equation to calculate the
in which u{® andt!® are the displacement and traction fieldspearly singular integrals arising in thin structufga7]). The com-
respectively;ufjﬂ)(P,Po) and Ti(]ﬁ)(p,po) the displacement and bination of these techniques is found to be extremely effective and

traction kernels(Kelvin's solution or the fundamental solutipn efficient in computing the nearly singular integrals in the two-
respectively;P the field point and®, the source point; ang the dlmen3|onal boundary integral equation, no matter how close the
boundary of the single material domaitFig. 2. C;;(Po) is a Source point is to the element of integration. Very accurate bc_)und-
constant coefficient matrix depending on the smoothness of & element method results have been obtained using this ap-
curve S at the source poinP, (e.g., C;;(Po)=1/25; if S'is proach for thin structures, such as coatings on macroscale struc-
smooth at poinP,, whered; is the Kronecker deltaThe super- tures, with the coating thickness-to-length ratios in the micro to
script 8 on the variables in Eq(1) signifies the dependence ofhanoscales and with a small number of boundary elements. The
these variables on the material domains, as specified below: Same approach ifi27] is applied in this paper to compute the
nearly singular integrals arising in the modeling of the inter-
pB=f: fiber domain(S=S,); phases.
B=i: interphase domair(S=S,US,); Employing the boundary elementdine elements in two-
' * ’ dimensiongl on the boundary and interfac8s, S,, andS;, the
B=m: matrix domain(S=S,US;). discretized equations of the three boundary integral equations as
) ] given in (1) for the fiber, interphase, and matrix can be written as
The two kemel functionsU{#'(P,Po) and T{(P,Po) in  foliows (cf., e.g.,[17]):
boundary integral equatiofil) are given as follows for plane-

strain problems: T =u"t", (in fiber domain )
Ui (P.Po) = 8P (1 D) (3=4v) 4 In| — +r,if,1}, TOUP+ TP =uPtD +udtd | (in interphase domajn
4
1
Tif(P.Pg) =~ dm(1—vP) Aral(1=2vP) 5+ 211 ] TEU+ T =uime™ + U§™t™ , (in matrix domain
5)
+(1=20B)(r jmi—r inp}, (2

in which U and T are matrices generated from th¥f)(P,Py)

and TP(P,Py) kernels, respectivelyy andt the displacement
and traction vectors, respectively. The superscripts indicate the
material domain, while the subscripts indicate the interface or
boundary §;, S,, or S;3) on which the integration is performed.

where u(? is the shear modulus and? the Poisson’s ratio for
the three different domains, respectivetythe distance from the
source pointP, to the field pointP; n; the directional cosines of
the outward normah; and ();=d()/dx; with x; being the coor-

dinates of the field poine. Assuming perfect bonding at the fiber/interphas®)(and

In Eq..(l) the |nt_egral contalnlng.theJl) (P’PO)_ kernel is interphase/matrix$,) interfaces, one can write the following in-
weakly singular, while the one (:ontalnergfyj (P,Py) is strongly  erface conditions:

singular and must be interpreted in the Cauchy principal value

sense. There is a vast body of literature on how to deal with the ons: ufl=yi=y continuit 6
Cauchy principle value integrals in the boundary element method St . v % ©
formulations for bulky-shaped structures, either analytically for ; e

y-shap ’ ylcaty t"=—t"=t;, (equilibrium) (7)

some special cases or numerically for other cases. An alternative
approach is to transform the boundary integral equation in the _ o
form of Eq.(1) into a weakly singular form by using some simple on S,: uy=uf"=u,, (continuity) (8)
solutions or integral identities for the fundamental solution

tV=—ti"=t,, (equilibrium) (9)
matrix whereuy, t;, Uy, andt, are defined as the interface displacement
/ or traction vectors.
Applying the interface condition&)—(9) in Egs.(3)—(5), one
terthse obtains the following system:
— " (f) (f)
e T3 0 0 Uy U3 0 0 t,
< & TV TY 0 [{up=|-UP U o |{t
1 2 2( = 1 2 2(
o T Tym]lUs 0 —um ugm]lts
\ fiber

whereuz=u{" andt;=t{" have been used for simplicity. Rear-
Fig. 2 Two unit cell models of the fiber-interphase-matrix sys- ranging the columns and moving all tienknown interface vari-
tem ables to the left-hand side, one finally arrives at
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T —u" o 0 0 C

T U TP —uP 0 [{uy= ?) {ta). B
m

0 o Ty o ougm Ty | LUs o

(10)

The last column in the matrix on the left-hand side and the matrix
on the right-hand side may need to be rearranged again according
to the boundary conditions specified 8g.

Equation(10) is the global system of equations for the fiber- e
interphase-matrix model. The system has a banded matrix due to
the multidomain nature of the problem. This system of equations A
satisfies both the continuity and equilibrium conditions at the in- D — I<—
terfaces explicitly, which is an advantage of the boundary element é
method approach over the finite element method in which only the
continuity of displacement fields can be satisfied explicitly. By Fig. 4 Square model under tension
solving Eq.(10), one can obtain the displacements and tractions at
the two interfaces and the boundary, and then calculate the inter-
face stresses based on the traction and displacement fields. UEf ):0_(0f ) =k(HAM),

(O=r=a)

3 Two Unit Cell Models With the Interphase

Two unit cell models are used in this paper, namely, the con-
centric cylinder model and the square motkde, e.g.[12]) both B()
of which include the interphasgig. 2). For the cylinder model, a(,})=k“>[A<”+(l—2v(”) —
analytical solutions are obtained for the displacement and stress r
fields, which can be employed to validate the boundary element
method results. For the square model, many finite element and oM = (m)
boundary element solutions are available in the literature for the '
effective elastic moduli which will be compared with the data
from the present boundary element method approach. a(g””:k(m)

) . . ) (i)
0-5')=k('{A('>—(1—2v(')) r_z}'

, (asr=<b) (12)

B(m
A<m>—(1—2y<m>)r—2

B(m
A<m>+(1—2u<m>)r—2}, (b<r=c)

3.1 Concentric Cylinder Model. For the concentric cylin-
der model, Fig. 3, the response of the composite inxtyeplane  Where the constan&s®, B¥), andk® (B=f, i andm) are given
is axisymmetric if the applied load or displacement on the bount® the Appendix.
ary S, is also axisymmetric. Here it is assumed that a radial dis- From the above expressions, one can compute the radial dis-
placements is given onS; (atr=c, Fig. 3. Applying the theory placement and stress components at any point in the three do-
of elasticity for plane strain case in the polar coordinate systefins within the cylinder model for any small values of the inter-
(r,0), one can derive the following expressions for the radidhase thickness.
displacement and stress fields in the fiber, interphase, and matri
respectively(see the Appendix for detajts

uP(r=A"r  (0<r=<a)

X3 2 Square Model. As shown in Fig. 4, the boundary con-
ditions for the square model undemsionare

along AB:  u,=94, t,=0;

(i)
u(i)(r)=A(i)r+ BT’ (asrsb) along BC: Uy:_CO, tx:0;
. along CD: u,=0, t,=0, (13)
m
u™(r)y=AMr+ — (b<r=<c) (11) except aty=0 where u,=u,=0;

and along DA:  u,=Cqy, t,=0;

whereu,, uy, t,, andt, are the displacement and traction com-
ponents, respectively§ the given displacemenFig. 4); andC,
an unknown constant. This unknown constant is meant to keep the
edges BC and DA straight after the deformation. This represents
the constraint of the neighboring cells to the one under study. In
the literature, there are several ways in dealing with these subtle
boundary conditions along the top and bottom edges. For ex-
ample, in[9] C, is chosen as zero in one case and nonzero in
0 another case. This is equivalent to another given displacement
condition besides the one imposed along the two vertical edges. In
[2] and recently in21], C, is regarded as an unknown and the
condition fELaydx:O along the top or bottom edges is used to
provide the additional equation needed for solving this unknown
together with other unknown boundary variables. Discretization of
this simple equation using shape functions is needed.19,
however, this straight-line constraint is totally ignored, agd
=t,=0 (traction-free conditionsare assumed. It is found that
results for the unit cell model is not very sensitive to all the
Fig. 3 Concentric cylindrical model different techniques mentioned above. In this papggy,is as-

=Y
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along AB:  u,=0, u,=7%;
L y I _+_ 9 X y= 7
T = - n_ along BC: u,=0, t,=0;
g Bf along CD:  u,=0, u,=0;
e
g along DA:  u,=0, t,=0. a7
g The average shear stress along edge AB can be evaluated by
A r=a - __ 1 (L
f X Txy= 51 Txy(l-xy)dys (18)
2L ),
r=b
________ and the effective shear modulus in the transverse plane and under
————————— the plane-straincondition is
B A or Ty _{Eum(Ly)dy 19)
Fig. 5 Square model under shear deformation © Yxy 7

wherey,,= 7/2L is the average shear strain.

Finally, one recognizes that the material const&fjts vy, , and
Gyy given in Egs.(15), (16), and (19), respectively, are deter-
ned under theplane-strain condition which accounts for the
nstraint in thez-direction ,=0). These constants are related
the intrinsic material properties by the following relatidio§,
g.,[35] and[21)):

sumed to be unknown, but a different approach is employed
enforce the straight-line condition, instead of solving for this ursg
known constant with additional equations. Here the penal%
method used in the finite element method for multipoint cons
straints (see, e.g.[34]) is introduced in the boundary element”

method equations to enforce that all the nodes along edges BC 1+ 2v;y . u;y )
and DA remain along straight lines after deformation. To imple- Ex:m Exo vy=1,7 Gu= G (20)
ment this penalty method in the boundary element method equa- a4 Xy

tions a very large numbépenalty with a proper sign is placed in which are the effective Young’s modulus, Poisson’s ratio, and
the locations in the matrix corresponding to the related displacghear modulus, respectively, in the transverse direction for the
ment components. Then these displacement components will hageposite.

the same value after the system of equations is solved. It is very

easy to implement this penalty method in the boundary element .

method equations and no additional equation is needed. Numerical Examples

Once stresses on the boundary are determined, the average tep-1 Cylinder Model. The cylinder modelFig. 3 is studied
sile stress along the edge AB is evaluated by first to validate the developed boundary element method formula-
1 (L tion and the solution strategy, since for this idealized geometry the
[ ay(L,y)dy. (14) analytical solutions are availableee Eqs(11)—(12) and the Ap-
2L ), pendiX. The specified radial displacement on the boundaty

. . o =) is 8. The following material constants for a glass/epoxy com-
The effective Young’'s modulus in the transverse direction a’]Sjosite are used:

under theplane-straincondition is thus determined by
. for fiber: E()=72.4 GPa(10.5x10° psi), »''=0.22;
. Ox JZLo(Ly)dy . (i) N0
EX:Z:T' (15) for interphase: E"=36.2 GPa(5.25x10° psi), »V=0.30;
&
_ _ " _ _ ~ for matrix. E™=345 GPa(0.5x1CF psi), »™=0.35:
wheree,= /2L is the average tensile strain. The effective Pois-

son’s ratio under thelane-straincondition can be determined by Where the Young's modulus of the interphase has been taken as
half of that of the fiber; and the dimensions used are

U)/(yzf % (16) a=c/2, b=a+h,
X with h being the thickness of the interphase, which is varying.
in which &, is the average strain in thedirection. Quadratic line elements are employed in the discretization and
For the square model undeshear deformation, Fig. 5, the two meshes are tested, one with 24 elemégitght on each circle
boundary conditions are and another one with 48 elemeli$ on each circle Differences

Table 1 Results of the radial displacement u(X10724) for the cylinder

model
h=0.1a h=0.0la h=0.001a
Point 2 Point 3 Point 2 Point 3 Point 2 Point 3
BEM 8.2961 7.0833 6.7379 6.6225 6.5909 6.5794
Analytical 8.2958 7.0830 6.7378 6.6224 6.5925 6.5810
Error (%) 0.0036 0.0042 0.0015 0.0015 0.0243 0.0243
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Table 2 Results of the radial stress o, (X E(™ /c) for the cylinder model
h=0.1a h=0.0la h=0.00la

Point 1 | Point2 | Point3 | Point 1 | Point2 | Point3 | Point 1 | Point2 | Point 3

BEM 3.6515 4.2806 4.3550 3.4215 4.0636 4.0714 3.4009 4.0442 4.0449

Analytical | 36513 | 42803 | 43544 | 34214 | 40633 | 40711 | 3.4006 | 40461 | 4.0458

Error (%) | 00055 | 0.0070 | 00138 | 00029 | 00074 | 00074 | 00088 | 0.0470 | 00222

in the results from the two meshes are less than five percent aftéctive Young’s modulus. It should also be pointed out that for
the results from the refined meéh8 elementsare reported. The the finite element results if®], the only thickness considered is
radial displacements and stresses at selected p@tigs 3) are h=1.0um which is relatively large compared with the fiber ra-
given in Table 1 and Table 2, respectively. It is observed that tlkus (a=8.5um). If a smaller thickness were used in the finite
maximum errors of the displacement and stress using the dewelement model, a much larger number of elements would have
oped boundary element method are less than 0.05 percent inb@en needed in order to avoid large aspect ratios in the finite
the cases with different thickness of the interphase. These reselisment mesh, as demonstrated in a similar stadg[27]). How-
demonstrate that the developed boundary element method aper, for the boundary element method employed here, the same
proach is extremely accurate and effective in modeling the intefumber of elements can be used no matter how small the thick-
phases with any small thickness, as has been confirmed in H&s of the interphase is.

context of single material problentg27]). ) )
(b) Effect of the Interphase Thicknesgzigure 6 shows the

4.2 Square Model effect of different interphase thicknesses to the effective Young's

. . , . . modulus. In order to compare with the data[#1] and[19], the
(a) Calculation of Effective Young’s Modulus With Varyings, 1o material constants as listed in Section(ff the cylinder

mterpgaset.Prolperty. Fc'jrSt’ thge siua_lr_i model ”tr.‘der fatﬁtretch "Pnodeb are used. It is found that the effect of the thickness is not
e x-direction is consideredig. 4). The properties of the con- significant on the effective Young’s moduli when the fiber volume

stituent materials considered are fraction V; is small (50 percent and legswhile significant effect

for fibper: E(f)=84.0 GPa, »')=0.22; is observed wheW; is large(70 percent This may be due to the
) 0 0 fact that the effective elastic moduli are obtained by evaluating the
for interphase: E"'=4.0~12.0 GPa, »''=0.34; average stress on the outer boundary of the mésxdge AB, Fig.

for matrix: EM=4.0 GPa, »™=0.34; 4). When the fiber volume fraction is small, the interphase is away
from the matrix outer boundary and thus changing the interphase
and,a=8.5um, b=a+h, 2L=21.31um (fiber volume fraction thickness does not considerably affect the stresses on the edge
V=50 percent). Young's modulus for the interphase is changing. This will change if the fiber volume fraction is large.g., 70
in the range between 4.0 and 12.0 GPa. The effect of the varjgercent when the interphase becomes closer to the outer bound-
tions in the interphase material on the effective Young’s modulggy of the matrix. It should also be pointed out that when the fiber
of the composite is of the primary interest here. A total of 64olume fraction is large, it will present additional difficulty in the
quadratic boundary elements are used, with 16 elements on egafdeling using the finite element method and earlier boundary
of the two circular interfaces and 32 elements on the outer bounglement method formulation, because of the thinness of the matrix
ary. Table 3 shows the effective Young's moduli obtained froregion. However, for the current boundary element method for-

the boundary element method stress data using E9j.and then mylation, this additional thinness of the matrix domain does not
Eq. (20), and compared with those from the finite element methggtesent any problem.

quarter model with 3518 linear triangular element§9i for the

thicknessh=1.0um. The boundary element method results are (€) Effect of Nonuniform ThicknessNext, the effect of non-
slightly lower than those from the finite element method dat&lniform thickness of the interphase on the interface stresses and
This may be caused by the use of linear triangular element in tfective elastic moduli is investigated. The starting modeég.

finite element method which tends to overestimate the stiffness4fis the same as the one used for Table 3 with the material
the structure. It is noticed that the different boundary conditiormnstants listed at the beginning of this subsectoith E(
along the top and bottom edges of the square m@dss-traction =42.0GPa). To form the nonuniform distribution of the inter-
or straight-line conditionshave very little influences on the final phase, the outer boundary of the interphase is shifted to the left

Table 3 Effective transverse elastic modulus (GPa) using the square unit cell

model

Interphase Current BEM with Current BEM with FEM

property traction-free conditions | straight-line conditions (191)

EY (GPa) on BC and DA on BC and DA
4.0 11.61 11.61 12.25
6.0 13.18 13.02 1371
8.0 13.97 13.89 14.68
12.0 15.04 14.93 1591
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i — ¥ - Without interphase
701 | --3-- With interphase (h=0.01a)
— -A— -With interphase (h=0.03a)
601 | — .o~ Other BEM ([21])
5.0 | —8— Self-consistent ([19])
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%y 30
>
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Fiber volume fraction (Vp)

Fig. 6 Influence of the thickness on the effective Young’s modulus

slightly (see Fig. 7. When the offsefA is close toh (the initial,

face stress at point twhich is the maximum interface normal

uniform thicknesy the change of the interphase thickness in thetres$ increases for about 50 percent while the stress at point 2
x-direction is the largestX=0 corresponds to the uniform inter- (the second largest interface stieisereases for about 30 percent.

phasé. The interface normal stresses at points 1 an@ig. 7),

However, the effect of the nonuniform thickness of the interphase

normalized by those in the uniform case, are plotted in Fig. 8. Dua the effective Young’s modulus is found to be less than three
to the misalignment of the fiber and interphase centers, the intpercent. This, again, is largely due to the averaging process on the

Fig. 7 The interphase with nonuniform thickness

1.60

edge AB which is away from the interphase.

(d) Calculation of Shear Modulus With Varying Interphase
Thickness. Finally, the effective shear modulus in the transverse
direction is calculated using the square unit cell model shown in
Fig. 5. The boundary conditions applied are listedlif and Egs.
(19—(20) are used to compute the shear modulus. In order to
compare the results with those in the literature, the following ma-
terials properties for a Kevlar/epoxy composite are used in the
current boundary element method calculation:

for fibper: E(")=7.0 GPa, »'=0.30;
for interphase: E'=5.0 GPa, »'=0.35;
for matrix: E™=3.0 GPa, »™=0.35.

Table 4 shows the results of the effective shear modulus by the
current boundary element method with and without the presence
of the interphase. The data without the interphdse @) agrees
very well with the results from the finite element methpél]) and

1.50 - —6—Increases in stress at point 1

1.40 1

— H — Increases in stress at point 2

1.30

1.20

Normalized stresses

0.0 0.2 0.4

0.6 0.8 1.0

A/h

Fig. 8 Effect of nonuniform thickness on the interface stress
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Other BEM ([21]) 1.294 1513 1798
Current BEM (£ = 0.0) 1.2939 1.5133 1.7981 1.9866 Appendix
Current BEM (4 = 0.001a) 1.2941 1.5139 1.7994 1.9885 . i i .
Analytical Solution for the Concentric Cylinder Model.
Current BEM (k= 0.01a) 1.2964 1.5196 1.8111 2.0059 Here the analytical solution for the concentric cylinder model
Camen BEM (=010 735305 555 oA used to validate the boundary element method results is derived.
For the concentric cylinders, the response of the composite is

axisymmetric. Thus the equilibrium equation for two-dimensional
elasticity in the polar coordinate system reduces to

do,

the other boundary element meth@#é1]) both of which used the
perfect bonding condition and did not model the interphase. With dr

the increase of the thickness of the interphase, the shear modyliere the stress components, (o) are functions of only, and

deviates from the perfect bonding case slightly, with the largegie shearing stress,, is zero. The stress-strain relations for the
change(about eight percebccurring at the fiber volume fraction plane-strain case are

V;=0.6, for the interphase property considered. WRgr-0.7
andh=0.1a, the interphase will be outside the boundary of the
unit cell. This is not permissible and thus no boundary element
method data are generated.

+ o000, A

Oy [(L=v)e +veyl,

B E
T(1+v)(1-2v)

Ty —v)egtve]. (A2)

A oi=2v)

5 Conclusion The strain-displacement relations are
The advanced boundary element method formulation with thin- u du

body capabilities for elastostatic problems has been extended to gg=—, &

)

multidomain problems and applied to model the interphases in r dr’
fiber-reinforced composites under transverse loading. Compar@ﬁuations(Al), (A2), and(A3) lead to the following equation for
with the current spring-like models for the interphases in thge radial displacement:

boundary element method literature, this new interphase model is

based on the elasticity theory and thus provides a more accurate du 1du wu
account of the interphases in fiber-reinforced composites within F"r rdr 2
the linear theory. The developed boundary element code using the . . . o
object-oriented programming languag@++) can be utilized in  Whereu is the displacement in the radial direction.

analyzing the micromechanical properties of fiber-reinforced com- The solution of the above equation has the following form:
posites with the presence of interphases of any arbitrarily small B

thicknesguniform or nonuniform. The approach is very accurate u(r)y=Ar+ —, (A5)

as is validated using the concentric cylinder model for which the r

analytical solution has been derived. It is also very efficient as which A andB are determined by the applied boundary condi-
only a small numberless than one hundrgaf boundary ele- tions. The above form of the solution is the general form which
ments are needed to modelvwénole unit cell for the boundary valid for the fiber, interphase, and matrix. Thus for the three do-
element analysis, compared with the large numipeore than a mains, one has

few thousands of finite elements often needed for quarter

(A3)

=0, (A4)

model in the finite element method analysis. The approach pro- u®(r)=A"r, (assumeB!’’=0) (0<r=<a)
vides a greater flexibility in parametric study of the interphases as . ) g
well, since the geometry, size, or material property of the inter- uP(r)=Ar+ — (a<r<b)
phases can be changed very easily to investigate their effect on the r
micromechanical behaviors of the fiber-reinforced composites. () () B(m
Numerical studies in this paper show that the thickness, non- U =A"r+——, (bsr=c). (A6)

uniform distribution, and material property of the interphase can
have significant influences on the micromechanical behaviors I6fB(")#0, then atr =0, the displacemeni(")(0) will approach
the composites, such as effective elastic moduli and interfaicdinity, which is not warranted.

stresses, especially when the fiber volume fractions are largeBoundary and interface conditions are

These observations are consistent with the findings in both the

= (Mic)=
finite element method and boundary element method literatures on atr=c, u™(c)=4,

this subject. atr=b, u?(b)=u™(b), (A7)
Considerations of interface cracks in the present boundary ele- .

ment model and extension of the boundary element code to three a(b)=a{™(b),

dimensions to study the fiber-pullout failure modes will be inter- 0 )

esting and challenging next steps, both of which will further dem- atr=a, u'(a)=u’’(a),

onstrate the robustness of the developed boundary element
method approach as compared with the finite element method or
previous boundary element method approaches to the micromdiere § is the displacement applied on the outer boundary of the
chanical analysis of fiber-reinforced composites. matrix.

o (@)=01" (@),
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