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A unified boundary element method~BEM! is developed in this paper to model both the exterior
acoustic field and the elastic shell-like structure in a coupled analysis. The conventional boundary
integral equation~BIE! for three-dimensional~3D! elastodynamics is applied to thin shell-like
structures which can have arbitrary shapes and small thicknesses. The nearly singular integrals
existing in the BIE when applied to thin bodies are transformed to nonsingular line integrals and are
evaluated accurately and efficiently. For the exterior 3D acoustic domain, the Burton and Miller
composite BIE formulation is employed to overcome the fictitious eigenfrequency difficulty~FED!
and the thin-shape breakdown~TSB!. Conforming C0 quadratic elements are employed in the
discretization of the two sets of BIEs. The developed BIE formulations are valid for both radiation
and scattering problems and for all wave numbers. Numerical examples using spherical and
cylindrical shells, including nonuniform thickness and nondimensional wave numbers up to 12,
clearly demonstrate the effectiveness and accuracy of the developed BEM approach. ©1999
Acoustical Society of America.@S0001-4966~99!01709-9#

PACS numbers: 43.20.Fn, 43.20.Rz, 43.40.Rj@CBB#
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INTRODUCTION

The effective control of noise and vibration in a stru
tural acoustic system depends largely on the accurate ev
ation of the sound–structure interaction which is charac
ized by the energy transferring back and forth between
acoustic field and the elastic structure. When the struct
impedance is comparable to the acoustic impedance, bo
the responses of the structure and the sound field can
significantly affected by this sound–structure interactio
Many numerical techniques have been developed for
analysis of the sound–structure interaction problems, s
analytical approaches are limited to simple geometries
loading conditions. For a review of the subject on sound a
elastic structure interactions, refer to the classical work
Refs. 1–3 and the references therein.

For the numerical analysis of the acoustic wave, the
nite element method~FEM!,4 infinite element method
~IEM!,5,6 and boundary element method~BEM!7–15 have
been investigated intensively, among others. Detailed
views and more references for the three major techniques
be found in Refs. 4, 5, and 15. The FEM uses 3D element
model the 3D acoustic field. When the infinite acoustic fie
is encountered, the finite-element model has to be trunc
at an artificial outer boundary at which an approximate n
reflecting boundary condition is applied. The Sommerf
radiation condition is in general not satisfied in this ea
FEM approach. In the early versions of the IEM, a variety
shape functions were used to approximate the spatial d
of the acoustic pressure outside the finite-element model.
cently, a new infinite element approach using a multip

a!Electronic mail: Yijun.Liu@uc.edu
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expansion of the acoustic pressure in the field exterior t
spheroid surrounding the structure was developed.5,6 This
multipole expansion in spheroidal coordinates satisfies
Sommerfeld radiation condition automatically at infinity an
can converge to the exact solution with only a few layers
3D acoustic elements outside the structure.

The BEM has long been considered as a rigorous
proach to exterior acoustic problems. The Sommerfeld ra
tion condition is satisfied exactly by the boundary integ
equation~BIE! and only the interior boundary~i.e., the outer
surface of a structure! needs to be discretized. Therefore, t
analysis of structures with simple or complicated geometr
or multiple scatterers, can be performed conveniently by
BEM. Since near field solutions may be sensitive to sm
features on the surface of the elastic structure, the ability
modeling these small features without additional efforts a
makes the BEM attractive. The possible drawbacks in
BEM approach include the nonuniqueness problem wh
arises when the conventional BIE~CBIE! is applied to an
exterior acoustic domain. This problem is also referred to
the fictitious eigenfrequency difficulty~FED!, since nonu-
nique solutions arise at the eigenfrequencies of the assoc
interior problems.7,8 However, this FED can be circumvente
by either the CHIEF method7 or the Burton and Miller com-
posite formulation.8 It has been shown in Refs. 12–15 an
many others that the Burton and Miller composite BIE fo
mulation, employing a linear combination of the CBIE an
the hypersingular BIE~HBIE!, is the most effective method
to overcome the fictitious eigenfrequency difficulty for ext
rior acoustic problem and elastodynamic problems.16 It has
also been demonstrated17–19 that the composite BIE formu
lation can overcome the thin-shape breakdown~TSB!18,20ex-
isting in the CBIE when it is applied to domains surroundi
12479/106(3)/1247/8/$15.00 © 1999 Acoustical Society of America
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thin shell-like structures. The hypersingular integral in t
composite BIE presents no difficulty at all, since it can
readily transformed into weakly singular integrals and ac
rately evaluated by ordinary numerical quadrature.14,15

For the modeling of elastic structures, the FEM with
various formulations for beams, plates, shells, and solids
the mostly accepted method in structural acoustic analy
However, there are many assumptions involved in the be
plate, or shell elements. Solid elements with proper asp
ratios should be used when high accuracy is demanded. V
large FEM models may result when solid elements are
plied to thin shell-like structures. It may also be difficult
generate the FEM mesh for thin structures if the geometr
complicated. On the other hand, the BEM has establis
itself as a viable alternative or complement to the FEM
both elastostatic and elastodynamic problems~see, e.g., Refs
16, 19, and 21–29! after its accuracy and efficiency hav
been demonstrated and the numerical difficulties have b
eliminated. For structural acoustic analysis, the BEM ba
on 3D elastodynamics and using surface discretization is
advantageous, since the proper coupling of the elastic st
ture and the acoustic field can be ensured using the s
surface mesh. However, there have been two major diffi
ties or concerns when the CBIEs are applied directly to t
bodies~including thin voids or open cracks, thin shell-lik
structures, and thin layered structures!, where two parts of
the boundary become close to each other. One difficult
the possible degeneracy of the CBIE for thin bodies.18 The
other is the difficulty of the nearly singular integrals18,29,30

which arise when the integration is conducted on a surf
with the source point being very close to the surface. B
cause of these two difficulties, the BEM has been conside
unsuitable for thin-body problems for a long time. It h
been shown in Refs. 18 and 29 that these two difficulties
be overcome readily with some analytical efforts. The deg
eracy, which happens when CBIEs are applied to the
surfaces of a thin void or crack in an exterior-type proble
can be overcome by employing the Burton and Miller co
posite formulation.17–19 For an interior-type problem~thin
shells, etc.!, it has been shown29 that no degeneracy wil
happen when CBIEs are applied on both sides of a thin sh
Accurate results for both 2D and 3D thin structures ha
been obtained after the nearly singular integrals are han
correctly using the line integral approach.29,31

For the coupled structural acoustic problem, the m
commonly used approach is the FEM/BEM approach,32–34

which employs the finite elements for the elastic struct
and boundary elements for the exterior acoustic field. T
approach combines the advantages of both the FEM
BEM. The drawbacks in this approach include the misma
of the desirable mesh sizes on the interface between
acoustic field and the elastic field. Since the FEM mesh d
sity required for the elastic structure is usually higher th
the BEM mesh density for the acoustic field, and a comm
mesh should be used for the two domains to ensure pr
interface conditions, the selected mesh could be unrea
cally dense for the acoustic field and the efficiency can s
fer. The FEM/FEM ~or FEM/IEM! approach, where the
structure is modeled by FEM and the exterior acoustic fi
1248 J. Acoust. Soc. Am., Vol. 106, No. 3, Pt. 1, September 1999
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by the IEM, is regaining popularity in computational stru
tural acoustics, due to recent success.4–6 The least explored
approach is the BEM/BEM approach, which has been st
ied for bulky elastic structures in Refs. 35 and 36. In Ref.
the BEM/BEM approach is applied to the acoustic wave
teracting with bulky elastic bodies in the context of the no
destructive evaluation. In Ref. 36, the BEM/BEM approa
was tested on both bulky solid and hollow sphere~thick shell
with thickness to radius ratio50.5! using isoparametric ele
ments. The effectiveness and efficiency of the BEM/BE
approach were demonstrated clearly with accurate results
tained for both radiation and scattering problems.35,36 How-
ever, the interaction of the acoustic wave with thin shells w
not analyzed in Refs. 35 and 36, probably due to concern
the degeneracy of CBIEs for thin bodies and the difficulty
dealing with nearly singular integrals which were st
troublesome to compute a decade ago.

The present paper extends the BEM/BEM approach
the structural acoustic problem for thin shell-like structur
which can have arbitrarily small and nonuniform thickne
Two sets of BIEs, one for the elastic structure~finite interior
domain! and the other for the acoustic field~infinite exterior
domain!, are presented. The conventional BIE based on
elastodynamics is used for the elastic structure. The ne
singular integrals are transformed into line integrals wh
are computed very accurately and efficiently, based on
recent development of the BEM for thin structures.18,19,29–31

The fictitious eigenfrequency difficulty and the thin-sha
breakdown in the CBIE are removed by using the compo
BIE formulation using a linear combination of the CBIE an
HBIE in the acoustic domain. The weakly singular form
the hypersingular BIE15 is employed, which can be readil
evaluated by the usual numerical quadrature. The two se
BIEs are coupled at the outer~wet! surface of the structure
by the interface conditions. Quadratic conforming eleme
~with C0 continuity! are used for the discretization of th
surfaces of the elastic structure. For the verification of
coupled BIE formulations, spherical shells of different thic
ness~including nonuniform thickness! and materials, and a
cylindrical shell structure, are tested for radiation and sc
tering problems. Very satisfactory results are obtain
which clearly demonstrate the effectiveness and accurac
the developed BEM/BEM approach to the structural acou
problems for thin shell-like structures. Efforts are underw
to further improve the computational efficiency of the dev
oped BEM/BEM approach and to study the multidoma
BEM for slender structures. Results will be reported in su
sequent papers.

I. BOUNDARY INTEGRAL EQUATION FORMULATION

Consider a 3D elastic thin structure~V! of an arbitrary
shape and immersed in an acoustic media~E! with its outer
surface denoted bySa and inner surface bySb ~Fig. 1!. The
normal on either surface is defined as pointing away from
elastic domain. We consider only time-harmonic wave m
tion. The acoustic field is assumed to be inviscid and
elastic structure is assumed to be homogeneous, isotro
and linearly elastic. Body forces are assumed to be ne
1248S. H. Chen and Y. J. Liu: Unified BEM
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gible. Under these conditions, the wave equation govern
the elastic domain~V! can be written as~index notation is
used in this paper!

~c1
22c2

2!uk,ki~P!1c2
2ui ,kk~P!1v2ui~P!50, ;PPV,

~1!

in which c1 andc2 are the wave speeds of the pressure w
~P-wave! and shear wave~S-wave!, respectively;ui the dis-
placement at a pointPPV; v the angular frequency of os
cillation. The dependence ofui on v has been suppresse
The governing equation for the acoustic domain is the He
holtz equation,

¹2f~P!1k2f~P!50, ;PPE, ~2!

wheref5fS1f I is the total disturbed acoustic pressure
a pointP,fS the scattered wave,f I the incident wave for a
scattering problem,k5v/c the wave number, andc the
speed of sound in the fluid.

On the two surfacesSa andSb of the structure, boundary
or interface conditions need to be specified. On surfaceSb ,
harmonic excitations in the form of surface displacemen
surface traction can be applied, corresponding to a w
posed boundary value problem. OnSa , where the two do-
mains are in contact, the following interface conditions a
specified:

~a! The normal derivative of the acoustic pressure is
lated to the displacement in the normal direction as

]f

]n
5rfv

2un , ~3a!

wherer f is the mean density of the fluid, andun the
normal component of the displacement.

~b! The normal stress is equal to the acoustic pressure
that

ti52fni , ~3b!

where t i is the traction andni the components of the
normal (i 51,2,3) in the global coordinates. In additio
to these conditions, the acoustic pressure field must
isfy the Sommerfeld radiation condition at infinity
which is automatically satisfied by the BIE.

For the 3D elastodynamic problem, the integral rep
sentation of Eq.~1! may be written in the following form:

FIG. 1. A 3D shell structure immersed in fluid.
1249 J. Acoust. Soc. Am., Vol. 106, No. 3, Pt. 1, September 1999
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Ci j ~P0!uj~P0!5E
S
Ui j ~P,P0!t j~P!dS~P!

2E
S
Ti j ~P,P0!uj~P!dS~P!, ~4!

in which Ui j andTi j are the dynamic displacement and tra
tion kernels, respectively;P the field point andP0 the source
point, S the boundary of the elastic structure (S5SaøSb),
and the coefficientCi j (P0)5d i j , 1/2d i j , or 0 when the
source pointP0 is in the interior regionV, on the boundary
S~if it is smooth! or in the exterior regionE, respectively~d i j

is the Kronecker delta!. The second integral in Eq.~4!, when
P0 is on the boundaryS, is of the Cauchy principle value
~CPV! type, which requires delicate numerical quadrature
general. This CPV integral can be avoided by recasting
~4! into a weakly singular form26 ~with P0 on S! as

E
S
@Ti j ~P,P0!2T̄i j ~P,P0!#uj~P!dS~P!1E

S
T̄i j ~P,P0!

3@uj~P!2uj~P0!#dS~P!

5E
S
Ui j ~P,P0!t j~P!dS~P!, ;P0PS, ~S5SaøSb!,

~5!

whereT̄i j is the static traction kernel. In Eq.~5! every inte-
gral is at most weakly singular and can be computed us
the conventional quadrature.

For thin shell-like structures, the second integral in E
~5! becomes nearly singular when the source point is at
surface and the integration is performed on the nearby
ments on the other surface. This nearly singular integral
be transformed into line integrals which are not singular
all.29,30 With the help of these line integrals, Eq.~5! can be
applied to shell-like structures and will not break down ev
when the thickness of the shell is very small.29 Certainly, one
can simply increase the number of integration points or
subdivisions on the element to deal with the nearly singu
integrals in the BEM as applied for thin bodies. Howev
this approach has been found inefficient and prohibitiv
expensive for computing such integrals.30

For the acoustic domain embracing the elastic structu
the conventional boundary integral representation of Eq.~2!
is the Helmholtz integral~note the direction of the normaln,
Fig. 1!,

C~P0!f~P0!5E
Sa

F]G~P,P0!

]n
f~P!

2G~P,P0!
]f~P!

]n GdS~P!1f I~P0!,

~6!

whereG(P,P0) ~5eikr /4pr , with r 5uP0Pu) is the full space
Green’s functions, and the coefficientC(P0)51, 1/2, or 0
when the source pointP0 is in E, on the boundarySa ~if it is
smooth! or in V, respectively. When the source pointP0 is
on the boundarySa , the integral for both integrands i
weakly singular, contrary to the case of Eq.~4!. However,
1249S. H. Chen and Y. J. Liu: Unified BEM
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mains, nonunique solutions will arise at the frequencies c
responding to the eigenfrequencies of the interior domain
was shown in Refs. 12–15 that with the use of the we
known Burton and Miller formulation, that is, a linear com
bination of CBIE and HBIE as shown symbolically by

CBIE1bHBIE50 ~b5constant!, ~7!

the fictitious eigenfrequency difficulty can be overcome
fectively. It was also found in Refs. 18 and 19 that the th
shape breakdown of the CBIE can be solved as well by us
this composite BIE formulation.

The HBIE in Eq.~7! is readily obtained by taking the
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directional derivative of Eq.~6! in the directionn0 ,

]f~P0!

]n0
5E

Sa

F]2G~P,P0!

]n]n0
f~P!

2
]G~P,P0!

]n0

]f~P!

]n GdS~P!

1
]f I~P0!

]n0
, ;P0PE. ~8!

Equation~8! can be written in the weakly singular form15

~with the source pointP0 on the boundarySa! as
]f~P0!

]n0
2E

Sa

]2Ḡ~P,P0!

]n]n0
Ff~P!2f~P0!2

]f~P0!

]ja
~ja2j0a!GdS~P!2E

Sa

]2

]n]n0
@G~P,P0!2Ḡ~P,P0!#f~P!dS~P!

2eak

]f~P0!

]ja
E

Sa

F ]Ḡ~P,P0!

]n0
nk~P!1

]Ḡ~P,P0!

]n
nk~P0!GdS~P!

52E
Sa

F ]G~P,P0!

]n0
1

]Ḡ~P,P0!

]n
G ]f~P!

]n
dS~P!1E

Sa

]Ḡ~P,P0!

]n F]f~P!

]n
2

]f~P0!

]n GdS~P!1
]f I~P0!

]n0
, ;P0PSa ,

~9!
a-
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o-
ob-

esh
ce.
whereḠ is the static kernel,ja and j0a (a51,2) the two
tangential coordinates of the pointsP and P0 , in a local
coordinate Oj1j2j3 (j35n), respectively, and eak

5]ja /]xk (k51,2,3) are the first two column vectors of th
inverse of the Jacobian matrix.15

For the hypersingular integral in~8! to exist as the
source pointP0 approaches the boundary or for the weak
singular forms in~9! to work, the density functionf(P) is
required, in theory, to have continuous tangential derivati
~C1,a continuity! in the neighborhood of the source pointP0 .
This smoothness requirement imposes severe limitation
the applications of HBIEs. For example, this smoothness
quirement will exclude, theoretically, the use ofC0 boundary
elements, such as the conforming quadratic elements, in
discretizations of HBIEs. Relaxation of this smoothness
quirement for HBIEs has been attempted by several aut
~see, e.g., Refs. 12–14, 37 and 38!. The validation of this
relaxation has also been provided in Refs. 15, 39, and 4
has been postulated in Ref. 15 that the originalC1,a continu-
ity requirement on the density function in the HBIE form
lations can be relaxed to piecewiseC1,a continuity in the
numerical implementation of the HBIEs as in the form of E
~9!, so that conforming quadratic elements can be appl
Converged and very good numerical results have been
tained by adopting this strategy for the acoustic problem15

However, for domains with edges and corners, the use
conforming quadratic elements for Eq.~9! is not straightfor-
ward. Techniques, such as using coincident nodes, to
with these situations, need to be tested.
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II. DISCRETIZATION OF THE BIE

To obtain the numerical solution of Eqs.~5! and ~7!,
surfacesSa and Sb are discretized using isoparametric qu
dratic elements~Fig. 2!. The discretized form of Eq.~5! can
be expressed in matrix form as

FUaa

Uba

Uab

Ubb
G H ta

tb
J 1FTaa

Tba

Tab

Tbb
G H ua

ub
J 5 H0

0J , ~10!

in which subscriptsa andb refer to the outer surfaceSa and
inner surfaceSb , respectively; matricesU and T are from
the displacement and traction kernels, respectively;u and t
are the displacement and traction vectors, respectively.
total number of elements and nodes onSa are denoted byMa

andNa , respectively, and similarlyMb andNb for the num-
ber of elements and nodes onSb . The two coefficient matri-
ces in Eq.~10! are square matrices of the dimension 3N by
3N(N5Na1Nb). Sinceta, ua, andtb ~or ub) are unknowns,
additional information will be needed from the acoustic d
main in order to solve the coupled structural acoustic pr
lem.

The model for the acoustic field shares the same m
with the model for the elastic field on the interface surfa

FIG. 2. Conforming quadratic boundary elements.
1250S. H. Chen and Y. J. Liu: Unified BEM
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The linear system of equations obtained after discretiza
of the acoustic BIE~7! can be written in the following matrix
form:

G
]f

]n
1Hf5fI, ~11!

whereG and H are bothNa by Na matrices andfI is the
known vector from the incident wave. For a coupled stru
tural acoustic problem, both (]f/]n) and f on the surface
(Sa) are unknowns but are related to the unknowns of
elastic domain (ta and ua! through the interface condition
@Eqs. ~3a! and ~3b!#. By using the interface conditions, tw
sets of these unknowns can be eliminated and the resu
linear system of equations can be expressed in matrix f
as (]f/]n) and ta are eliminated,tb is assumed known!,

F H
Ea

Eb

D
Taa

Tba

0
Tab

Tbb

G H f
ua

ub

J 5H f1

2Uabtb

2Ubbtb

J , ~12!

in which D5r fv
2Gn is anN by 3N matrix andn is anN by

3N matrix in the following form:

n5F n1
T

0
:
0

0
n2

T

:
0

0
0
:
0

...

...

...

0
0
:

nN
T
G , ~13!

where na
T is the surface normal vector at nodea (a

51,2,...,N). Also in Eq. ~12!, Ea52Uaan
T and Eb

52Uabn
T are matrices of the dimension 3N by N.

III. NUMERICAL EXAMPLES

First, the developed BEM/BEM approach was tested
radiation and scattering problems using a spherical s
~Fig. 3! with outer radiusa51 and thicknessh50.5, 0.05,
and 0.01 m, respectively. Quadratic elements were used~Fig.
2! on both Sa and Sb . Four BEM meshes with increasin
total numbers of elements~64, 112, 160, and 306! were used.
Three typical materials, steel~Young’s modulusE52.07
31011 Pa, Poisson’s ratio n50.3, and density r
57810 kg/m3!, aluminum (E57.1031010Pa, n50.33, r
52700 kg/m3!, and hard rubber (E52.303109 Pa, n50.4,
r52117 kg/m3!, were used for the shell structures. The s

FIG. 3. A spherical shell with uniform thickness~outer radius5a,
inner radius5b!.
1251 J. Acoust. Soc. Am., Vol. 106, No. 3, Pt. 1, September 1999
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rounding acoustic media were assumed to be seawater i
the cases; the density and speed of sound used are
kg/m3 and 1500 m/s, respectively.

For radiation problems, uniform time-harmonic pressu
was applied onSb with amplitudetb513106 N/m and the
angular frequency being given. The radiated wave by a s
spherical shell with the thickness to radius ratioh/a50.5
was studied first. The normalized sound pressure calcul
at a distancer 55a from the center of the shell is plotted i
Fig. 4 versuska for three different meshes. Very fast conve
gence of the BEM solution is observed as compared to
analytical solution~given in Ref. 36 where typographical e
rors have been corrected!, although the convergence at th
resonant frequency is slower than those at other frequen
Since the mesh withM5112 already gives very good resul
except at the resonant frequency~Fig. 4!, we used this mesh
for the next two test cases on radiation problem. Figur
shows the BEM solution of the normalized radiated sou
pressure plotted versuska from a thin spherical shell (h/a
50.01) for three different materials. The BEM solution
match the analytical solution as expected. It is noted that
resonance occurs at lower frequency when the material of
shell is softer. The effect of the thickness of a steel spher
shell on the radiated sound field is shown in Fig. 6, where

FIG. 4. Normalized radiated sound pressure from a steel spherical she~r
55a, h/a50.5!.

FIG. 5. Normalized radiated sound pressure from a thin spherical she
different material~r 55a, h/a50.01,M5112!.
1251S. H. Chen and Y. J. Liu: Unified BEM
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normalized radiated sound pressure atr 55a is plotted ver-
suska.

For scattering problems, an elastic spherical shell
pinged upon by an incident wavef I traveling in the positive
x direction was considered. The inner surface of the spher
shell is assumed traction-free. The BEM solution using
mesh withM5112 is found to be a good approximation. It
therefore used in the test cases for scattering problem. F
the effect of thickness on the backscattering by the sphe
shell is studied. A steel spherical shell withh/a50.05 and
h/a50.01 was tested. Figure 7 shows the BEM solutions
the normalized backscattered sound pressure atr 55a plot-
ted versuska. The membrane solutions2 are also shown in
the figure for comparison. The membrane model assu
that flexural stresses are negligible as compared to memb
stresses. This means that the membrane solution is a
approximation only when the shell is thin enough and
frequency is low. It can be seen that the BEM solution agr
with the membrane solution at low frequencies even wh
resonant frequencies are involved. At higher frequenc
large deviation can be observed near the resonant freq
cies. Since the BEM solution is based on rigorous 3D e
todynamics, it is considered more accurate than the m
brane solution.

The effect of different composition of the shell was stu
ied next using a hard rubber spherical shell and a s

FIG. 6. Normalized radiated sound pressure from steel spherical shells
different thickness~r 55a, M5112!.

FIG. 7. Normalized backscattered sound pressure by a steel spherical
with varying thickness~r 55a, M5112!.
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spherical shell withh/a50.01. Figure 8 shows the norma
ized backscattered sound pressure atr 55a plotted versus
ka. It can be seen that the first resonant frequency for
hard rubber shell occurs at a lower frequency than that of
steel shell.

A test case on spherical shell with nonuniform thickne
~Fig. 9! was performed with no additional modeling effo
involved. With its outer surface and inner surface forming
sphere and a spheroid, respectively, the thickness of
spherical shell varies. The three axes of the spheroid w
denoted bybx , by , andbz , respectively~Fig. 9!. The radi-
ated wave from a steel shell withbx50.95a and by5bz

50.99a was calculated with uniform pressuretb applied on
the inner surface. Figure 10 shows the normalized radia
pressure atr 55a in the direction ofu50 and 90 deg at
frequencies up toka512. Two meshes withM5112 and
M5160 are used in the calculation. The result calcula
with 112 elements is shown since the mesh withM5160
provided only little improvement. The results from unifor
thickness spherical shell withh/a50.05 and 0.01 are show
in the same figure for comparison. It can be seen that
result for the nonuniform thickness shell in both directio
approximates the average of the results from the two unifo
thickness shells at low frequencies (ka,3). At higher fre-
quencies, however, significant differences between the
sults for the two directions can be observed.

ith

hell

FIG. 8. Normalized backscattered sound pressure by a thin spherical sh
different materials~r 55a, h/a50.01,M5112!.

FIG. 9. A spherical shell with nonuniform thickness.
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Finally, scattering from a cylindrical~capsulelike! thin
shell ~Fig. 11! made of steel is studied with a total of 21
elements ~626 nodes!. The incident wave is from the
x-direction and the sound pressures from backscattering~at
x5210 m, y5z50! and forward scattering~at x510 m, y
5z50! from the elastic shell are plotted in Fig. 12. F
comparisons, the results from the acoustics BEM15 ~assum-
ing the shell to be rigid! and the current coupled BEM with
large Young’s modulus and density for the shell are a
plotted in the figure. These latter two results agree very w
for the rigid case, as expected. For forward scattering,
result for steel shell using the coupled BEM oscillates arou
the data for the rigid shell case. However, the result for ba
scattering from the steel shell using the coupled BEM diff
significantly from the corresponding rigid shell case, es
cially when the frequencies are higher. This further signifi
the necessity of a coupled analysis for structural acou
problems.

IV. DISCUSSIONS

A unified BEM/BEM approach to sound–structure inte
action problems in the frequency domain for shell-like stru
tures is developed in this paper. The formulation is valid
general loading conditions and for all frequencies. The B
ton and Miller composite BIE formulation is employed

FIG. 10. Normalized radiated sound pressure from a steel spherical
with nonuniform thickness~r 55a, M5112,bx50.95a, by5bz50.99a!.

FIG. 11. A cylindrical ~capsulelike! shell structure with thickness50.01,
radius51.0, and total length57.0 m.
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overcome the fictitious eigenfrequency difficulty and t
thin-shape breakdown for the acoustic domain. The hyp
ingular integrals involved are transformed into the wea
singular forms and evaluated by ordinary quadrature. T
nearly singular integrals existing in the 3D elastodynam
BIE for thin-shell-like structures are treated by semianaly
cal methods and evaluated accurately. Numerical exam
on radiation and scattering problems from bulky and th
spherical and cylindrical shells~including ones with nonuni-
form thickness! clearly demonstrate the effectiveness and
curacy of the developed approach.

There are many advantages in the developed BEM/B
approach to the structural acoustic analysis. First of all,
approach renders high accuracy for both acoustic and ela
domains due to the semianalytical nature of the BEM. S
ond, the coupling effect is modeled effectively and ef
ciently by sharing the same surface mesh on the interf
between the elastic domain and the acoustic domain. M
over, the unified BEM approach is much easier in model
than the other methods for structures with complicated f
tures in either the interior~e.g., stiffeners! or the exterior
~e.g., rudders, turbo blades of a submarine!. Multiple scatter-
ers ~e.g., an array of shell structures! can also be modeled
readily by the BEM with the multidomain technique. Finall
shell structures with nonuniform thickness or coatings~lay-
ered shell structures! can be handled accurately by the BI
formulations. The remaining major issue is the compu
tional efficiency, as the BEM usually generates fully pop
lated matrices, although of smaller size than those of
matrices from the FEM/IEM approach. With the recent d
velopment of iterative solvers for asymmetric and den
complex systems~see, e.g., Ref. 41!, which can dramatically
increase the speed of solving large linear systems, this
ciency concern may be eased in the near future.

Studies on efficient solution techniques, including ite
tive solvers, and more complicated shell structures using
developed BEM/BEM approach to structural acoustics
underway and the results will be reported in subsequent
pers. Multiple scatterers and layered shell structures~shells
with coatings! will be interesting and challenging future re
search topics.
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