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A unified boundary element methg8EM) is developed in this paper to model both the exterior
acoustic field and the elastic shell-like structure in a coupled analysis. The conventional boundary
integral equation(BIE) for three-dimensional3D) elastodynamics is applied to thin shell-like
structures which can have arbitrary shapes and small thicknesses. The nearly singular integrals
existing in the BIE when applied to thin bodies are transformed to nonsingular line integrals and are
evaluated accurately and efficiently. For the exterior 3D acoustic domain, the Burton and Miller
composite BIE formulation is employed to overcome the fictitious eigenfrequency diffi¢tH)

and the thin-shape breakdowfSB). Conforming C° quadratic elements are employed in the
discretization of the two sets of BIEs. The developed BIE formulations are valid for both radiation
and scattering problems and for all wave numbers. Numerical examples using spherical and
cylindrical shells, including nonuniform thickness and nondimensional wave numbers up to 12,
clearly demonstrate the effectiveness and accuracy of the developed BEM approad899©
Acoustical Society of AmericfS0001-49669)01709-9

PACS numbers: 43.20.Fn, 43.20.Rz, 43.40GBB]

INTRODUCTION expansion of the acoustic pressure in the field exterior to a
_ _ o spheroid surrounding the structure was developed@his
The effective control of noise and vibration in a struc- mytipole expansion in spheroidal coordinates satisfies the
tural acoustic system depends largely on the accurate evald,mmerfeld radiation condition automatically at infinity and

ation of the sound-structure interaction which is characterggp, converge to the exact solution with only a few layers of
ized by the energy transferring back and forth between thgp 5c0ustic elements outside the structure.

acoustic field and the elastic structure. When the structural The BEM has long been considered as a rigorous ap-

impedance is comparable to the acoustic impedance, both gfqach to exterior acoustic problems. The Sommerfeld radia-
the responses of the structure and the sound field can kg, condition is satisfied exactly by the boundary integral
significantly gﬁected b_y this sound-structure 'nteraCt'on'equation(BlE) and only the interior boundarg.e., the outer
Many numerical techniques have been developed for the  tace of a structuyeeeds to be discretized. Therefore, the
analysis of the sound-structure interaction problems, sincgy,\vsis of structures with simple or complicated geometries,
analytical approaches are limited to simple geometries ang; jtiple scatterers, can be performed conveniently by the
loading conditions. For a review of the subject on sound angsg - Since near field solutions may be sensitive to small
elastic structure interactions, refer to the classical work inyea1res on the surface of the elastic structure, the ability of
Refs. 1-3 and the.references', therein. . _modeling these small features without additional efforts also

_ For the numerical analysis of the acoustic wave, the fiynayes the BEM attractive. The possible drawbacks in the
nite eSI%ment method(FEM),” infinite elemer;t_lsmethod BEM approach include the nonuniqueness problem which
(IEM),”” and boundary element methdBEM)™" have  5ises when the conventional BIEBIE) is applied to an
been investigated intensively, among others. Detailed regyerior acoustic domain. This problem is also referred to as
views anq more references for the three major techniques cafe fictitious eigenfrequency difficultyFED), since nonu-
be found in Refs. 4, 5, and 15. The FEM uses 3D elements Qg e solutions arise at the eigenfrequencies of the associated
model the 3D acoustic field. When the infinite acoustic f'eldinterior problems® However, this FED can be circumvented
is encountered, the finite-element model has to be truncate& either the CHIEF methddbr the Burton and Miller com-
at an artificial outer boundary at which an approximate nons

: NI . posite formulatior?. It has been shown in Refs. 12—15 and
reflecting boundary condition is applied. The Sommerfeldmany others that the Burton and Miller composite BIE for-

radiation condition is in general not satisfied in this early ., |ation employing a linear combination of the CBIE and
FEM approqch. In the early versions o_f the IEM, ava_riety Ofthe hypersingular BIEHBIE), is the most effective method
shape functions were used to approximate the spatial decgy ,yercome the fictitious eigenfrequency difficulty for exte-

of the acoustic pressure outside the finite-element model. Rejo; acoustic problem and elastodynamic probléfk. has
cently, a new infinite element approach using a multipoleg;sq peen demonstraféd™® that the composite BIE formu-

lation can overcome the thin-shape breakd¢WaB)'®*°ex-
dElectronic mail: Yijun.Liu@uc.edu isting in the CBIE when it is applied to domains surrounding
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thin shell-like structures. The hypersingular integral in theby the IEM, is regaining popularity in computational struc-
composite BIE presents no difficulty at all, since it can betural acoustics, due to recent succ&sThe least explored
readily transformed into weakly singular integrals and accuapproach is the BEM/BEM approach, which has been stud-
rately evaluated by ordinary numerical quadratire, ied for bulky elastic structures in Refs. 35 and 36. In Ref. 35,
For the modeling of elastic structures, the FEM with itsthe BEM/BEM approach is applied to the acoustic wave in-
various formulations for beams, plates, shells, and solids, iteracting with bulky elastic bodies in the context of the non-
the mostly accepted method in structural acoustic analysislestructive evaluation. In Ref. 36, the BEM/BEM approach
However, there are many assumptions involved in the beanwas tested on both bulky solid and hollow sphehgck shell
plate, or shell elements. Solid elements with proper aspestith thickness to radius rat0.5) using isoparametric ele-
ratios should be used when high accuracy is demanded. Verpents. The effectiveness and efficiency of the BEM/BEM
large FEM models may result when solid elements are apapproach were demonstrated clearly with accurate results ob-
plied to thin shell-like structures. It may also be difficult to tained for both radiation and scattering probleth® How-
generate the FEM mesh for thin structures if the geometry igver, the interaction of the acoustic wave with thin shells was
complicated. On the other hand, the BEM has establishetiot analyzed in Refs. 35 and 36, probably due to concerns of
itself as a viable alternative or complement to the FEM forthe degeneracy of CBIEs for thin bodies and the difficulty of
both elastostatic and elastodynamic probléses, e.g., Refs. dealing with nearly singular integrals which were still
16, 19, and 21—29after its accuracy and efficiency have troublesome to compute a decade ago.
been demonstrated and the numerical difficulties have been The present paper extends the BEM/BEM approach to
eliminated. For structural acoustic analysis, the BEM baset¢he structural acoustic problem for thin shell-like structures
on 3D elastodynamics and using surface discretization is als¢hich can have arbitrarily small and nonuniform thickness.
advantageous, since the proper coupling of the elastic strud-wo sets of BIEs, one for the elastic struct(fieite interior
ture and the acoustic field can be ensured using the san§omain and the other for the acoustic fiefohfinite exterior
surface mesh. However, there have been two major difficuldomain, are presented. The conventional BIE based on 3D
ties or concerns when the CBIEs are applied directly to thirflastodynamics is used for the elastic structure. The nearly
bodies (including thin voids or open cracks, thin shell-like singular integrals are transformed into line integrals which
structures, and thin layered structureshere two parts of are computed very accurately and efficiently, based on the
the boundary become close to each other. One difficulty i§ecent development of the BEM for thin structuf@3>29-5t
the possible degeneracy of the CBIE for thin bodfe$he The fictitious eigenfrequency difficulty and the thin-shape
other is the difficulty of the nearly singular integrdt8®3°  breakdown in the CBIE are removed by using the composite
which arise when the integration is conducted on a surfacB!E formulation using a linear combination of the CBIE and
with the source point being very close to the surface. BeHBIE in the acoustic domain. The weakly singular form of
cause of these two difficulties, the BEM has been considereH!® hypersingular BIE is employed, which can be readily
unsuitable for thin-body problems for a long time. It has €valuated by the usual numerical quadrature. The two sets of
been shown in Refs. 18 and 29 that these two difficulties caf$!ES are coupled at the outéwey) surface of the structure
be overcome readily with some analytical efforts. The degenPY the interface conditions. Quadratic conforming elements
eracy, which happens when CBIEs are applied to the twéwith C° continuity) are used for the dlscret|_z§1t|0_n of the
surfaces of a thin void or crack in an exterior-type promem’surfaces of the elast_lc structure. For the ver|f|cat|0n of the
can be overcome by employing the Burton and Miller Com_coupl_ed BIE_ formulatlpns, spherlcal shells of dlf_ferent thick-
posite formulatior’ "1 For an interior-type problentthin ne;s(lr_lcludmg nonuniform thicknegsand ma’Fer!aIs, and a
shells, etd, it has been show that no degeneracy will cyI!ndr|caI shell structure, are tested for radiation and scat-
happen when CBIEs are applied on both sides of a thin shelf€iNg problems. Very satisfactory results are obtained,
Accurate results for both 2D and 3D thin structures haveVhich clearly demonstrate the effectiveness and accuracy of

been obtained after the nearly singular integrals are handigij€ developed BEM/BEM approach to the structural acoustic
correctly using the line integral approatt problems for thin shell-like structures. Efforts are underway

For the coupled structural acoustic problem, the mosio further improve the computational efficiency of the devel-

commonly used approach is the FEM/BEM appro¥chi? oped BEM/BEM approach and to stgdy the multid_omain
which employs the finite elements for the elastic structureBE'vI for slender structures. Results will be reported in sub-

and boundary elements for the exterior acoustic field. Thi$eduent papers.

approach combines the advantages of both the FEM and

BEM. The Qrawbacks in this approach 'include the mismath. BOUNDARY INTEGRAL EQUATION FORMULATION

of the desirable mesh sizes on the interface between the

acoustic field and the elastic field. Since the FEM mesh den- Consider a 3D elastic thin structu(¥) of an arbitrary
sity required for the elastic structure is usually higher tharnshape and immersed in an acoustic me@pawith its outer

the BEM mesh density for the acoustic field, and a commorsurface denoted bg, and inner surface b, (Fig. 1). The
mesh should be used for the two domains to ensure prop&ormal on either surface is defined as pointing away from the
interface conditions, the selected mesh could be unrealistelastic domain. We consider only time-harmonic wave mo-
cally dense for the acoustic field and the efficiency can suftion. The acoustic field is assumed to be inviscid and the
fer. The FEM/FEM (or FEM/IEM) approach, where the elastic structure is assumed to be homogeneous, isotropic,
structure is modeled by FEM and the exterior acoustic fieldand linearly elastic. Body forces are assumed to be negli-
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Cij(PO)uj(PO):fSUij(PaPO)tj(P)dS(P)

_JSTij(P1PO)Uj(P)dS(P)- 4

in which Uj;; andT;; are the dynamic displacement and trac-
tion kernels, respectivelyp the field point andP, the source
point, S the boundary of the elastic structur8S,US;),
and the Coeff|C|entC,J(Po) ij, /26, or O when the
source pointP, is in the interior regiorV, on the boundary
FIG. 1. A 3D shell structure immersed in fluid. S(if it is smooth or in the exterior regiof, respectively(d;;
is the Kronecker delja The second integral in E¢4), when

Py is on the boundang, is of the Cauchy principle value
gECPV) type, which requires delicate numerical quadrature in
general. This CPV integral can be avoided by recasting Eq.
(4) into a weakly singular for? (with P, on S) as

gible. Under these conditions, the wave equation governin
the elastic domairfV) can be written agindex notation is
used in this paper

(C5— 3 U i(P) +C5U; i(P) + w?Ui(P)=0, VPeV, _ _
(1) fS[Tij(P!PO)_Tij(PvPO)]uj(P)dS(P)+ fSTij(PaPO)

in which c; andc, are the wave speeds of the pressure wave

(P-wave and shear wavéSwave), respectivelyu; the dis- X[uj(P) = u;(Po) JdS(P)

placement at a poinP e V; w the angular frequency of os-

cillation. The dependence af on w has been suppressed. - LUij(P!Po)tJ(P)dS(P)v VPoeS, (S=SUSy),

The governing equation for the acoustic domain is the Helm-

holtz equation, (5
V24(P)+k2¢(P)=0, VP E ) whereﬂ- is the static traction kernel. In E¢5) every inte-

gral is at most weakly singular and can be computed using
where = ¢S+ ¢' is the total disturbed acoustic pressure atthe conventional quadrature.

a pointP, ¢° the scattered wave)' the incident wave for a For thin shell-like structures, the second integral in Eq.
scattering problemk=w/c the wave number, and the (5) becomes nearly singular when the source point is at one
speed of sound in the fluid. surface and the integration is performed on the nearby ele-

On the two surfaceS, andS; of the structure, boundary ments on the other surface. This nearly singular integral can
or interface conditions need to be specified. On surface  be transformed into line integrals which are not singular at
harmonic excitations in the form of surface displacement omll.?*3° With the help of these line integrals, E¢) can be
surface traction can be applied, corresponding to a wellapplied to shell-like structures and will not break down even
posed boundary value problem. &g, where the two do- when the thickness of the shell is very snfdCertainly, one
mains are in contact, the following interface conditions arecan simply increase the number of integration points or use
specified: subdivisions on the element to deal with the nearly singular
integrals in the BEM as applied for thin bodies. However,
this approach has been found inefficient and prohibitively
expensive for computing such integrafs.

g For the acoustic domain embracing the elastic structure,
o P PUp, (3a the conventional boundary integral representation of (2.
is the Helmholtz integralnote the direction of the normal

where p; is the mean density of the fluid, ang, the ~ Fig. 1),

(@ The normal derivative of the acoustic pressure is re-
lated to the displacement in the normal direction as

normal component of the displacement. G(P,Py)
(b) The normal stress is equal to the acoustic pressure such C(Pg) ¢(Pg)= J { ' d(P)
that a
= dp(P
=—on, (3b) ~G(P,Py) d;(n )}damw'(%),

wheret; is the traction andh; the components of the ©6)
normal (=1,2,3) in the global coordinates. In addition
to these conditions, the acoustic pressure field must sawhereG(P,Py) (=e'"/4ar, with r=|PyP|) is the full space
isfy the Sommerfeld radiation condition at infinity, Green’s functions, and the coefficie6(P,)=1, 1/2, or O
which is automatically satisfied by the BIE. when the source poirR, is in E, on the boundar, (if it is
smooth or in V, respectively. When the source poiRg is
For the 3D elastodynamic problem, the integral repre-on the boundaryS,, the integral for both integrands is
sentation of Eq(1) may be written in the following form: weakly singular, contrary to the case of H¢). However,
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when the conventional BIE6) is applied to exterior do- directional derivative of Eq(6) in the directionn,
mains, nonunique solutions will arise at the frequencies cor-

responding to the eigenfrequencies of the interior domain. It  d¢(Py) 9*G(P,Py)

was shown in Refs. 12-15 that with the use of the well- ang :L anang ¢(P)

known Burton and Miller formulation, that is, a linear com- °

bination of CBIE and HBIE as shown symbolically by B IG(P,Pg) d¢(P) ds(P)
CBIE+BHBIE=0 (B=constant, 7) 9No an

the fictitious eigenfrequency difficulty can be overcome ef- n d¢'(Po) VP.cE ®)

fectively. It was also found in Refs. 18 and 19 that the thin- ang ' o=

shape breakdown of the CBIE can be solved as well by using

this composite BIE formulation. Equation(8) can be written in the weakly singular fotth

The HBIE in Eq.(7) is readily obtained by taking the (with the source poinP, on the boundans,) as

dp(Po) #*G(P,Py) dp(Po) 2 _
e —La Tnang [¢(P)_¢(Po)_ IE (fa—goaﬁdsm)—fsa 7nang LG(P:Po) ~G(P.Po)14(P)dS(P)
Id(Pg) IG(P,Py) IG(P,Py)
~ ek e ., g n(P)+ an N (Po) |[dS(P)
- dG(P,Pg)  dG(P,Pg) | d(P) dG(P,Pg) [0(P)  d¢(Py) d¢'(Py)
__La ang * an an dS(PHLa an an an ds(P)+ ang ' VPoeS,,
9)

whereG is the static kernel¢, and &, (a=1,2) the two Il. DISCRETIZATION OF THE BIE

tangential coordinates of the poin and P, in a local To obtain the numerical solution of Eq&) and (7),
coordinate O¢16,83 (£3=n), respectively, and e,  surfacesS, andS, are discretized using isoparametric qua-
=9¢, /9%, (k=1,2,3) are the first two column vectors of the dratic elementsFig. 2). The discretized form of E¢5) can
inverse of the Jacobian matrix. be expressed in matrix form as

For the hypersingular integral i8) to exist as the U U1 (t T T.l(u 0
source pointP, approaches the boundary or for the weakly Uaa Uab [ta] + Taa Tab [ua} :{O}’ (10)
singular forms in(9) to work, the density functiors(P) is ba  ~bbll*b ba 7 bbl{%h
required, in theory, to have continuous tangential derivatived? which subscripts andb refer to the outer surfacg, and
(C1@ continuity) in the neighborhood of the source poly.  inner surfaceS,, respectively; matrices) and T are from
This smoothness requirement imposes severe limitations '€ displacement and traction kernels, respectivelgnd t
the applications of HBIEs. For example, this smoothness re2'® the displacement and traction vectors, respectively. The

quirement will exclude, theoretically, the use®t boundary total number of elements and nodesgyrare denoted by,

elements, such as the conforming quadratic elements, in tlﬁendNa’ respectively, and similarly, andN,, for the num-

discretizations of HBIEs. Relaxation of this smoothness re- (.)f elements and nodes 651._The two coe_ff|C|en_t matri-
ces in Eq.(10) are square matrices of the dimensioN By

quirement for HBIEs has been attempted by several author. N(N=N,+Ny). Sincet,, u,, andt, (or uy) are unknowns,

(see, e.g., Refs. 12-14, 37 and)38he validation of this 5 qqitional information will be needed from the acoustic do-

relaxation has also been provided in Refs. 15, 39, and 40. {h5in in order to solve the coupled structural acoustic prob-
has been postulated in Ref. 15 that the origi@af continu-  |em

ity requirement on the density function in the HBIE formu- The model for the acoustic field shares the same mesh

lations can be relaxed to piecewi€"* continuity in the  with the model for the elastic field on the interface surface.
numerical implementation of the HBIEs as in the form of Eq.

(9), so that conforming quadratic elements can be applied.

Converged and very good numerical results have been ob-

tained by adopting this strategy for the acoustic probl&ms.

However, for domains with edges and corners, the use of

conforming quadratic elements for E®) is not straightfor-

ward. Techniques, such as using coincident nodes, to deal

with these situations, need to be tested. FIG. 2. Conforming quadratic boundary elements.
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0.08 — Analytical solution
*x BEM (M = 64)

4 BEM(M=112)
0.06 o BEM (M =160)

0.07

0.05 4

/i)

0.04

0.03

0.02

0.01 4

0.00
FIG. 3. A spherical shell with uniform thicknesgouter radius-a,
inner radius=b).

FIG. 4. Normalized radiated sound pressure from a steel spherical(shell

The linear system of equations obtained after discretization > /=09

of the acoustic BIE7) can be written in the following matrix

form: rounding acoustic media were assumed to be seawater in all
¢ the cases; the density and speed of sound used are 1026
G- tHo= ¢, (1) kg/m® and 1500 m/s, respectively.

For radiation problems, uniform time-harmonic pressure
whereG andH are bothN, by N, matrices and' is the  was applied orS, with amplitudet,=1x 10° N/m and the
known vector from the incident wave. For a coupled StrUC-angu|ar frequency being given. The radiated wave by a steel
tural acoustic problem, bottvg/dn) and ¢ on the surface  spherical shell with the thickness to radius ratita=0.5
(Sa) are unknowns but are related to the unknowns of theyas studied first. The normalized sound pressure calculated
elastic domain t, and u,) through the interface conditions at a distance =5a from the center of the shell is plotted in
[Egs. (3@ and (3b)]. By using the interface conditions, two Fig. 4 versuska for three different meshes. Very fast conver-
sets of these unknowns can be eliminated and the resultingence of the BEM solution is observed as compared to the
linear system of equations can be expressed in matrix formanalytical solutior(given in Ref. 36 where typographical er-

as (@l dn) andt, are eliminatedt, is assumed known rors have been correctedalthough the convergence at the
H D 0 o e resonant frequency is slower than those at other frequencies.
Since the mesh witM =112 already gives very good results
Ea Taa Tab Uap = _Uabtb , (12) y g yg

except at the resonant frequen@jig. 4), we used this mesh

Bo Toa Too) [ U bl for the next two test cases on radiation problem. Figure 5
in which D= p;0?Gv is anN by 3N matrix andvis anNby  shows the BEM solution of the normalized radiated sound
3N matrix in the following form: pressure plotted versua from a thin spherical shellhfa

nI 0 0 0 =0.01) for three different materials. The BEM solutions

match the analytical solution as expected. It is noted that the
, (13)  resonance occurs at lower frequency when the material of the
e T shell is softer. The effect of the thickness of a steel spherical
0 0 0 NN shell on the radiated sound field is shown in Fig. 6, where the

where n! is the surface normal vector at node («
=1,2,..N). Also in Eq. (12, E,=—U,»" and E,
=—U,,»' are matrices of the dimensiorN3by N.

0O np 0O 0

v=

Analytical (hard rubber)

1.0 o BEM (hard rubber)
—-=- Analytical (aluminum)
I1l. NUMERICAL EXAMPLES 0s | s BEM (aluminum)
- e Analytical (steel)
First, the developed BEM/BEM approach was tested on_ o BEM (steel)

radiation and scattering problems using a spherical shel§ °¢]
(Fig. 3 with outer radiusa=1 and thicknes$=0.5, 0.05,
and 0.01 m, respectively. Quadratic elements were (Sigd
2) on bothS, and S,,. Four BEM meshes with increasing
total numbers of elementé4, 112, 160, and 30&vere used.

0.4

Three typical materials, ste€¥oung’s modulusE=2.07 o 15‘,“,'."’"' . ‘ | . ‘
X 10 Pa, Poisson’s ratio»=0.3, and density p 0 2 4 6 8 10 12
=7810kg/n?), aluminum E=7.10<10*Pa, »=0.33, p ka

=2700kg/n?), and hard rubberE=2.30x 10° Pa, »=0.4, FIG. 5. Normalized radiated sound pressure from a thin spherical shell of
p=2117 kg/n‘f), were used for the shell structures. The sur-different materialr =5a, h/a=0.01,M=112).
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—-—- Analytical (h/a=0.5) & BEM (h/a=10.5)

0259 ___ Analytical Wa=0.05) o BEM (ha=005) 1.0 1 o
—— Analytical (h/a = 0.01) o BEM (Wa=0.01) "“ - o - BEM (hard rubber)

03 | ——- Membrane (steel) ) i x 1

--%--BEM (steel)

—— Membrane (hard rubber)

0.6

10591

1/t

i
1
i
i
r
1
]
i
i
j
04] ¢
i
‘.
024
I
o

FIG. 6. Normalized radiated sound pressure from steel spherical shells witn
different thicknesdr =5a, M=112). FIG. 8. Normalized backscattered sound pressure by a thin spherical shell of
different materialgr =5a, h/a=0.01,M =112).

normalized radiated sound pressure atba is plotted ver-
suska _ _ _ . spherical shell witth/a=0.01. Figure 8 shows the normal-

_ For scattering problems, an elastic spherical shell imq; o4 packscattered sound pressure ata plotted versus
pinged upon by an incident wavg' traveling in the positive .3 |t can be seen that the first resonant frequency for the
x direction was considered. The inner surface of the sphericgl, g rypper shell occurs at a lower frequency than that of the
shell is assumed traction-free. The BEM solution using thesteel shell.
mesh withM =112 is found to be a good approximation. Itis A test case on spherical shell with nonuniform thickness
therefore used_ln the test cases for scattgrlng problem. F!rs(tFig_ 9 was performed with no additional modeling effort
the eﬁect of .thlckness on the packscatterlng by the Spherlc‘filf'wolved. With its outer surface and inner surface forming a
she! is studied. A steel'spherlcal shell witita=0.05 gnd sphere and a spheroid, respectively, the thickness of the
h/a=0.01 was tested. Figure 7 shows the BEM solutions ol ericq| shell varies. The three axes of the spheroid were
the normalized backscattered sound pressure=dta plot-  janoted byb, b,, andb,, respectively(Fig. 9. The radi-
ted versuska The membrane solutiohsire also shown in ated wave fromya steel shell with.=0.9% and b.=b

. . X . z
the figure for comparison. T_h(_e membrane model assumes 0.9% was calculated with uniform pressw,eappliéd on
that flexural stresses are negligible as compared to membragg, inner surface. Figure 10 shows the normalized radiated
stresses. This means that the membrane solution is a go%ﬁjessure ar=>5a in the direction of¢=0 and 90 deg at
approximation only when the shell is thin enough and thefrequencies up tka=12. Two meshes withM =112 and
frequency is low. It can be seen that the BEM solution a9ree®) =160 are used in the calculation. The result calculated

with the membrane solution at low frequencies even when, ..t 112 elements is shown since the mesh vk 160

large deviation can be observed near the resonant frequefhiciness spherical shell witha=0.05 and 0.01 are shown

cies. Since the BEM solution is based on rigorous 3D elasy, e same figure for comparison. It can be seen that the

todynamics, it is considered more accurate than the meMygy it for the nonuniform thickness shell in both directions

brane solution. y approximates the average of the results from the two uniform

. The effept of different composmon_of the shell was StUd'thickness shells at low frequencielsa< 3). At higher fre-

ied next using a hard rubber spherical shell and a steg|,;oncies, however, significant differences between the re-
sults for the two directions can be observed.

1.0
09 4 ==+ Membrane solution (h/a = 0.05)
08 --4--BEM (h/a = 0.05) by
—— Membrane solution (h/a = 0.01) - bx »
07 r /
~o- BEM (Wa = 0.01) .
0.6 A
= X
o~ 05 A a
e v by
04 S
'
03 ; 6 L
i
'
0.2 : o b, X
|
|
0.1 pi H
o |
0.0 e e et o f e o e e A B
0.0 0.2 04 0.6 08 1.0 12 14 1.6 18 2.0
ka z

FIG. 7. Normalized backscattered sound pressure by a steel spherical shell

with varying thicknesgr =5a, M=112. FIG. 9. A spherical shell with nonuniform thickness.
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0.80 -

- Nonuniform thickness (90 degree) -~ Nonuniform thickness (0 degree) Back scattering (acoustic BEM)
0.25 ---u---Back scattering (coupled BEM, steel) T

—+ Uniform thickness (h/a = 0.01) - Uniform thickness (W/a = 0.05) 070 1 _ 5 -Back scattering (coupled BEM, large E & density)
—— Forward scattering (acoustic BEM) -
0.20 0.60 --—-Forward scattering (coupled BEM, steel} ra

050
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) ) i FIG. 12. Scattered sound pressure from the capsulelike shell structure.
FIG. 10. Normalized radiated sound pressure from a steel spherical shell

with nonuniform thicknes$r =5a, M=112,b,=0.95, by=b,=0.9%). overcome the fictitious eigenfrequency difficulty and the
thin-shape breakdown for the acoustic domain. The hypers-
Finally, scattering from a cylindricalcapsulelik¢ thin  ingular integrals involved are transformed into the weakly
shell (Fig. 11) made of steel is studied with a total of 216 singular forms and evaluated by ordinary quadrature. The
elements (626 nodes The incident wave is from the nearly singular integrals existing in the 3D elastodynamic
x-direction and the sound pressures from backscattéehg BIE for thin-shell-like structures are treated by semianalyti-
x=—10m, y=z=0) and forward scatterinat x=10m,y  cal methods and evaluated accurately. Numerical examples
=z=0) from the elastic shell are plotted in Fig. 12. For on radiation and scattering problems from bulky and thin
comparisons, the results from the acoustics BEfAssum-  spherical and cylindrical shellsncluding ones with nonuni-
ing the shell to be rigidland the current coupled BEM with form thicknesgclearly demonstrate the effectiveness and ac-
large Young’s modulus and density for the shell are alsccuracy of the developed approach.
plotted in the figure. These latter two results agree very well ~ There are many advantages in the developed BEM/BEM
for the rigid case, as expected. For forward scattering, th@pproach to the structural acoustic analysis. First of all, this
result for steel shell using the coupled BEM oscillates around@pproach renders high accuracy for both acoustic and elastic
the data for the rigid shell case. However, the result for backdomains due to the semianalytical nature of the BEM. Sec-
scattering from the steel shell using the coupled BEM differsond, the coupling effect is modeled effectively and effi-
significantly from the corresponding rigid shell case, especiently by sharing the same surface mesh on the interface
cially when the frequencies are higher. This further signifiedoetween the elastic domain and the acoustic domain. More-

the necessity of a coupled analysis for structural acousti@ver, the unified BEM approach is much easier in modeling
problems. than the other methods for structures with complicated fea-

tures in either the interiofe.g., stiffeners or the exterior
(e.g., rudders, turbo blades of a submarihdultiple scatter-
ers(e.g., an array of shell structupesan also be modeled

A unified BEM/BEM approach to sound-structure inter- readily by the BEM with the multidomain technique. Finally,
action problems in the frequency domain for shell-like struc-shell structures with nonuniform thickness or coatiflgs-
tures is developed in this paper. The formulation is valid forered shell structur¢san be handled accurately by the BIE
general loading conditions and for all frequencies. The Burformulations. The remaining major issue is the computa-
ton and Miller composite BIE formulation is employed to tional efficiency, as the BEM usually generates fully popu-
lated matrices, although of smaller size than those of the
matrices from the FEM/IEM approach. With the recent de-
velopment of iterative solvers for asymmetric and dense
complex systemssee, e.g., Ref. 41which can dramatically
increase the speed of solving large linear systems, this effi-
ciency concern may be eased in the near future.

Studies on efficient solution techniques, including itera-
tive solvers, and more complicated shell structures using the
developed BEM/BEM approach to structural acoustics are
underway and the results will be reported in subsequent pa-
pers. Multiple scatterers and layered shell structiséells
with coating$ will be interesting and challenging future re-
search topics.

IV. DISCUSSIONS
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