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Abstract

In this paper, an advanced boundary element method (BEM) with thin-body capabilities is applied to model multiple
cells of fiber-reinforced composites with the consideration of the interphases. Effects of the multiple-cell models, as
compared to the unit-cell model, in determining the effective material constants in the transverse plane, are studied. In
this BEM approach, the interphases are modeled as thin elastic layers based on the elasticity theory, as opposed to
spring-like models in the previous BEM and some models based on the finite element method (FEM). The BEM ap-
proach to the multiple-cell modeling is compared with the FEM approach. The advantages and disadvantages of the
BEM as compared with the FEM for the analysis of fiber-reinforced composites are discussed. It is shown that the
developed BEM is very accurate and efficient in the modeling and analysis of fiber-reinforced composites, and that
different cell models can have marked influences on the evaluations of the effective modulus of fiber-reinforced com-
posites. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Study of the interphases, which are thin layers
of a third material between the fiber and matrix
materials (Fig. 1), is very important because they
play a crucial role in the functionality and reli-
ability of the composite materials [1,2]. Effective
utilization of the strength and stiffness of the fiber-
reinforced composites depends on efficient load
transfers from the matrix to fibers through these
interphases. It is therefore essential to understand
the effects of the interphases in the fiber-reinforced
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composites, in order to provide some guidelines in
improving the design of the composite materials.
Many investigators have studied the influences of
the interphase thickness and material properties on
the effective Young’s moduli of fiber-reinforced
composites using analytical, experimental or
computational approaches, as shown, for example,
in [1-10] and the references therein.
Computational methods using the finite element
method (FEM) or the boundary element method
(BEM) are effective ways to study the microme-
chanical behaviors of composite materials (see, e.g.
[3-5,9-15]). The boundary integral equation/
boundary element method (BIE/BEM), pioneered
in [16] for elasticity problems, has been demon-
strated to be a viable alternative to the FEM for
many problems in engineering, due to its features
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Fig. 1. Interphases in a fiber-reinforced composite.

of boundary-only discretization and high accuracy
(see, e.g. [17-20]). The high accuracy and efficiency
of the BEM for stress analysis, especially in frac-
ture mechanics [18,21], is well recognized because
of its semi-analytical nature and boundary-only
discretization. The discretization errors in the
BEM are mainly confined to the boundary of the
material domain and interfaces between different
materials. The meshing for the BEM is also much
more efficient than that for other domain-based
methods, as will be demonstrated in this paper.
Recently, an advanced BEM with thin-body
capabilities was developed for the studies of the
interphases in fiber-reinforced materials [22,23],
and thin films or coatings [24,25]. In this BEM
approach, the interphases are modeled as thin
elastic layers using the elasticity theory, as op-
posed to the spring-like models in the previous
BEM [3.4,15] and some FEM work. The devel-
oped BEM approach is found to be extremely
accurate and efficient for the analysis of thin and
layered structures. By employing much fewer
boundary elements (less than 200) for a whole
unit-cell model (Fig. 2), the developed BEM can
provide accurate stress results for which the FEM
has to employ more than 3500 elements for only a
quarter model of the same unit-cell as reported in
[10]. However, in the work reported in [22], only
unit-cell models of the fiber-reinforced composites,
containing only one fiber with the surrounding
matrix and interphase, are considered. Interactions
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Fig. 2. A square unit-cell model under tension.

among the fibers are not taken into account and
thus the effects of these interactions in determining
the effective material constants cannot be studied
by using these unit-cell models.

In this paper, this advanced BEM approach [22]
is extended to model multiple cells (fibers) of fiber-
reinforced composites with the consideration of
the interphases. Effects of the multiple-cell models,
as compared to the unit-cell model, in determining
the effective material constants in the transverse
plane, are studied. The BEM approach to the
multiple-cell modeling is compared with the FEM
approach. The advantages and disadvantages of
the BEM as compared with the FEM for the
analysis of fiber-reinforced composites are dis-
cussed. It is shown that the developed BEM is very
accurate and efficient in the modeling and analysis
of the fiber-reinforced composites, and that dif-
ferent cell models can have marked influences on
the evaluations of the effective modulus of fiber-
reinforced composites.

2. The boundary integral equation formulation
The following conventional boundary integral

equation for isotropic, linearly elastic materials [16]
is applied in this study (index notation is used here):
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Cy(Po)u” (Po) = / W (P, P) " (P)

= T/ (P, Po)u/ (P)]dS(P),
(1)

in which «” and /" are the displacement and
traction fields, respectively; Ui(/ﬁ (P,P,) and
Tiﬁ-ﬁ '(P,Py) the displacement and traction kernels
(Kelvin’s solution or the fundamental solution),
respectively; P the field point and P, the source
point; and S the boundary of a single material
domain V. C;(B) is a constant coefficient matrix
depending on the smoothness of the curve S at the
source point Py. The superscript 5 on the variables
in Eq. (1) signifies the dependence of these vari-
ables on the material domain. The expressions for
the kernel functions l]iifi)(P,Po) and Tiﬁ.ﬁ)(P,Po),
which contain the material constants, can be found
in [22] or any other references on the BEM (see,
e.g. [17,19,20)).

BIE (1) is applied to each material domain
(matrix, fiber and interphase), which relates the
boundary displacement and traction fields in that
domain only. The resulting BIEs from each do-
main are coupled through the interface conditions
[22]. The continuity of the displacement and trac-
tion is imposed at the perfectly bonded interface.
The discretization procedures to arrive at the lin-
ear systems of equations based on BIE (1) can be
found in any references on the BEM (see, e.g.
[17,19,20]). The final system of linear algebra
equations based on BIE (1) for the composite
material problems considered here can be written
as [22]:

(M) (M) n
T3'> _gl 0(‘) ) (i 0 i
T Ul T —UuY o w
0 0 " o T ||k
u3
0
=10 |{ts}, (2)
um

in which U and T are matrices generated from the
B .

Ug’ (P,Py) and Ti;.ﬁ) (P,Py) kernels, respectively; u

and t, the nodal displacement and traction vectors,

respectively, at the interfaces or outer boundary.
The superscripts indicate the material domain (f =
fiber, 1 = interphase, and m = matrix), while the
subscripts indicate the interface or boundary (1 =
fiber—interphase interface, 2 = interphase-matrix
interface, and 3 = matrix boundary) on which the
integration is performed. Details of coupling the
BIEs from each domain and the numerical imple-
mentations can be found in [22,24].

In the recent work in [22], interphases in uni-
directional fiber-reinforced composites under
transverse loading are modeled successfully by the
BEM based on the elasticity theory. The inter-
phases are regarded as elastic layers between the
fiber and matrix, as opposed to the spring-like
models in the BEM literature. Both cylinder and
square unit-cell models of the fiber—interphase—
matrix systems are considered. The effects of
varying the modulus and thickness (including
nonuniform thickness) of the interphases with
different fiber volume fractions are investigated.
Numerical results demonstrate that the developed
BEM is very accurate and efficient in determining
the interface stresses and effective elastic moduli of
fiber-reinforced composites with the presence of
interphases of arbitrarily small thickness and
nonuniform thickness. Interface cracks at the in-
terphase regions are also considered using this
BEM approach [23]. However, in the work re-
ported in [22], only unit-cell models of the fiber-
reinforced composites, containing only one fiber
and the surrounding matrix and interphase, is
considered. Interactions among the fibers are not
taken into account and thus the effects of these
interactions in determining the effective materials
constants cannot be studied, using these unit-cell
models.

In this paper, the BIE as given in Eq. (1) and
with the thin-body capabilities developed in [22,24]
for 2-D thin elastic materials is employed to study
the multiple-cell models of fiber-reinforced com-
posites with the presence of the interphases. The
isoparametric quadratic boundary (line) elements
are applied in this study. The finite element ap-
proach is also tested in this study for this type of
analysis of composite materials using the com-
mercial FEM software package ANSYS. Com-
parison of the BEM approach with that of the
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FEM is investigated carefully regarding the mod-
eling efficiency and solution accuracy.
3. Numerical examples

The multiple-cell models used in this study are
the 2 x 2 and 3 x 3 models as shown in Fig. 3.

Their corresponding BEM and FEM discretiza-
tions are shown in Figs. 4 and 5. More fibers can
be included in the model, e.g., using an n x n
model with n > 3. The fibers can also be arranged
in a different pattern, e.g., in hexagon or ran-
domly. Studies of these cases are readily achievable
with the developed BEM and will be left to future
investigations.
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Fig. 3. Square multiple-cell models: (a) 2 x 2 model; (b) 3 x 3 model.
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Fig. 4. Discretizations of the 2 x 2 model: (a) BEM mesh; (b) FEM mesh.



90 X.L. Chen, Y.J. Liu | Computational Materials Science 21 (2001) 86-94

900
900

O
O
9.

(b)

Fig. 5. Discretizations of the 3 x 3 model: (a) BEM mesh; (b) FEM mesh.

3.1. Effect of the multiple-cell models on the effective
Young’s modulus

Effects of the multiple-cell models in determin-
ing the effective Young’s modulus with varying
interphase property as compared to the unit-cell
model are studied first.

The square unit-cell model and multiple-cell
(2 x 2 and 3 x 3 cell) models under tension in the
x-direction are shown in Figs. 2 and 3, res-
pectively. The properties of the constituent
materials (epoxy—matrix, e-glass fiber) considered
are:

for fiber E) = 84.0 GPa, v = 0.22;

for interphase E = 4.0 ~ 12.0 GPa, v = 0.34;

for matrix E™ = 4.0 GPa, v™ = 0.34;
and a=85um, b=a+h,L =2131 pm, fiber
volume fraction ¥/ = 50% (Fig. 2). Young’s mod-
ulus for the interphase is changing in the range
between 4.0 and 12.0 GPa. In the unit-cell BEM
model, a total of 64 quadratic line elements are
used with 16 elements on each of the two circular
interfaces and 32 elements on the outer boundary
in the BEM model as compared with the FEM
model with 1,128 quadratic 2-D elements (an FEM
mesh with converged results). In the 2 x 2 multi-
ple-cell model, a total of 192 quadratic elements
are used with 16 elements on each of the eight
circular interfaces and 64 elements on the outer

boundary in the BEM model (Fig. 4(a)) as com-
pared with the FEM model (Fig. 4(b)) with 4,512
quadratic elements. In the 3 x 3 multiple-cell
model, a total of 384 quadratic elements are used
with 16 elements on each of the eighteen circular
interfaces and 96 elements on the outer boundary
in the BEM model (Fig. 5(a)) as compared with
the FEM model (Fig. 5(b)) with 10,152 quadratic
elements.

Table 1 shows the effective Young’s modulus
obtained by using the unit-cell and multiple-cell
BEM models, as compared with the corre-
sponding FEM models for the thickness 4 =
1.0 pum (See [22] for the expressions for the
effective transverse Young’s modulus of fiber-
reinforced composites under the plane-stain con-
dition). The BEM results are very close to the
corresponding FEM results with all the differ-
ences within 1%.

Finite element contour plot for stress o, is
presented in Fig. 6. We observe that the straight-
line condition along the cell edges is not satisfied
by the free-traction assumption along the top and
bottom edges of the model. However, it is shown
in [22] that the different boundary conditions along
the top and bottom edges of the square model
(free-traction or straight-line conditions) have
negligible influences on the calculation of the ef-
fective Young’s modulus.
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Table 1
BEM and FEM results of the effective Young’s modulus £, (GPa) for different interphase Young’s modulus
Model EY =4.0 GPa EY =6.0 GPa EY =8.0 GPa EY =12.0 GPa
(1) Unit-cell model BEM 11.57 13.05 13.98 15.09
FEM 11.59 13.04 13.94 15.01
(2) 2 x 2 model BEM 11.63 13.07 13.96 15.01
FEM 11.62 13.06 13.97 15.04
(3) 3 x 3 model BEM 12.30 13.84 14.79 15.92
FEM 12.33 13.86 14.81 15.92
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Fig. 6. FEM (ANSYS) contour plot for stress a,.
It is shown in the Table 1 that the material 18
properties of the interphase and modeling using w 16-
the multiple-cell models do have influences on the =R N
effective Young’s modulus of the composites. The 'g 1 ¥ 4
Young’s modulus results of the unit-cell model 2 0 M
. . . . (o] B
differ slightly with those of the 2 x 2 multiple-cell = 8
model (within 1%). However, the differences be- 2 E()=40GPa
h Its of the 3 x 3 multiple-cell model g 6 N= g
thenﬁ e reSIE A o | {) . 2, a— E(i) = 6.0 GPa
and those o ' the qmt-ce model increase to R . E()=80GPa
around 6%. With the increase of numbers of fibers w2 E() = 12.0 GPa
involved in the model, the difference may further 0 :
increase. We can observe the results more clearly 1 2 3

from Fig. 7, which shows the influence of multi-
ple-cell model on the effective Young’s modulus.
From Fig. 7, we also notice that the effect of

BEM Model

Fig. 7. Influence of multiple-cell model on the effective Young’s
modulus.
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Table 2
BEM results of the effective Young’s modulus £, (GPa) for different interphase thickness /
BEM Model h=1.0 pm h=0.7 um h=0.5 pm h=02 pm
(1) Unit-cell model 13.05 12.58 12.28 11.85
(2) 2 x 2 model 13.07 12.82 12.52 12.09
(3) 3 x 3 model 13.84 13.35 13.04 12.59

multiple-cell models on the effective transverse
Young’s modulus will be nearly the same for dif-
ferent interphase Young’s modulus.

3.2. Effect of the interphase thickness

In the above results, the only thickness consid-
ered is 2 = 1.0 pm, which is relatively large com-
pared with the fiber radius (¢ = 8.5 pm). If a
smaller thickness were used in the FEM model, a
much larger number of elements would have been
needed in order to avoid large aspect ratios in the
FEM mesh. However, for the boundary element
method employed here, the same number of ele-
ments can be used, no matter how small the
thickness of the interphase is. Table 2 shows the
effective Young’s modulus for unit-cell model and
multiple-cell models with the change of the inter-
phase thickness from 1.0 to 0.2 um when E® =
6.0 GPa. The influence of thickness on the effective
Young’s modulus is shown in Fig. 8, from which
we observe that the effective Young’s modulus
decreases with the decrease of interphase thick-
ness. The influence of multiple-cell models on the
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Fig. 8. Influence of thickness on the effective Young’s modulus.

effective Young’s modulus is nearly the same for
different interphase thickness.

4. Discussions

Numerical studies in this paper show that the
thickness, material properties of the interphases,
and the number of fibers involved in the model
have marked influences on the analysis of the mi-
cromechanical behaviors of the composites. In
these studies, boundary element method shows
great potential in dealing with structures with thin-
layers due to its boundary-based nature as com-
pared with finite element method which is domain-
based. When the thickness of the interphase is
changed, the BEM mesh can be updated easily,
while for the FEM totally different meshes need to
be generated for different interphase thickness.
When the interphase thickness is relatively small,
an extremely large number of elements need to be
used in the FEM model. Hence, using the FEM
may not even be feasible to deal with such prob-
lems, if the computing resources are limited. With
much fewer boundary (line) elements, the BEM
distinguishes itself in the study of the materials or
structures with thin shapes, regarding the model-
ing efficiency and solution accuracy.

However, at present, the developed BEM solver
runs several times slower than the commercial
FEM software ANSYS used in this study for the
same problem. This is due to the fact that a lot of
numerical integrations need to be done in the
BEM approach in order to form the coefficient
matrix and these integrations must be done accu-
rately to ensure the accuracy of the BEM results.
Optimization of the integration process and solu-
tion methods in the BEM is possible, such as using
the new multipole expansion techniques and iter-
ative solvers. These investigations are under way in
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order to improve the solution efficiency of the
developed BEM. On the other hand, the com-
mercial FEM software has been improved signifi-
cantly over the time, and thus has been very much
optimized regarding the solution efficiency. Even if
the BEM after the optimization still runs slower
than an FEM software, the efficiency of the BEM
in the modeling stage (human time) can well offset
the longer time in the solution process (computer
time). The convenience of the BEM in handling
the shell-like structures [26-28], such as the inter-
phases in composite materials, and the accuracy of
the BEM, make the BEM a very attractive nu-
merical tool for the analysis of such materials or
structures. With further improvements and the
development of an easy-to-use graphical-user in-
terface (GUI) for the developed BEM, it can be-
come an efficient, accurate, and yet robust
numerical analysis tool for the materials research
and development.

5. Conclusion

An advanced boundary element method has
been developed to study the interactions of mul-
tiple fibers in the composites with the presence of
the interphases. Influences of the interphase
thickness and material properties on the effective
Young’s modulus in the transverse plane have
been investigated. The numerical results demon-
strate that the developed BEM is very accurate
and efficient for the analysis of multiple-cell
models of fiber-reinforced composites, with the
presence of the interphases. Extensions of the
BEM to consider the thermal loading, multi-lay-
ered materials (coatings and thin films), various
interface cracks and 3-D models will be interesting
topics and can be carried out readily.
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