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Efficient solution methods are investigated in this paper for solving the linear system of equations
resulting from the recently developed boundary element metB&d) for the coupled structural
acoustic analysigS. H. Chen and Y. J. Liu, J. Acoust. Soc. A6, Pt. 1, 1247-12541999]. An
iterative solver, namely, the quasiminimal residual metf@WR), is selected among others and
found to be very favorable over the direct solver for solving the linear systems of equations with
complex coefficients generated by the structural acoustic BEM. Four problem-dependent
preconditioning schemes are developed to facilitate or accelerate the convergence of the iterative
solver. A new effective preconditioner specially designed for frequency-sweep analysis is also
presented in this paper. With this preconditioner, the iterative solver has been found to be stable in
a frequency-sweep analysis and can converge much faster than the direct solver. The
double-precision arithmetic is also found very useful in improving the convergence rate of the
iterative solver for structural acoustic problems. 2000 Acoustical Society of America.
[S0001-496600)04512-4

PACS numbers: 43.20.Fn, 43.20.Rz, 43.40®&BB]

I. INTRODUCTION into two groups, namely, stationary and nonstationary itera-
tive methods. The stationary iterative methods refer to itera-

Recently, a unified boundary element meth@®EM) . . . :
. : tive methods such as Jacobi, Gauss—Seidel, successive over-
was developed for the coupled analysis of acoustic waves

interacting with thin, elastic, shell-like structureblumerical relaxation(SOR), and symmetric successive over-relaxation

examples demonstrated that the unified BEM developed ifsSSOR' In general, the stationary iterative methods, if they

very effective and accurate for the analysis of sound an on\r/]ergjg,_rhconverge_ much srl]ov(\j/er_ tlh?jn non stationary
shell-like structure interactions in both scattering and radia/€thods. The nonstationary methods include conjugate gra-

tion problems. The method is valid for shell-like structuresdi€nt (CG), conjugate gradient on the normal equations
with arbitrarily small or nonuniform thickness, and does not(CGNE), generalized minimal residudGMRES, biconju-
suffer from the thin-shape breakdown and fictitious eigenfre9ate grad!en(B|CG), quasiminimal reSIduaﬂQ!\/IR), conju-
quency difficulty in the exterior acoustic domain. It is the 9ate gradient squar¢€G$, biconjugate gradient stabilized
objective of this paper to improve the efficiency of the uni- (Bi-CGSTAB), Chebyshev iteration, and so on. All nonsta-
fied BEM developed by reducing the solution time of solvingtionary iterative methods listed above except Chebyshev it-
the linear system of equations generated. An iterative solvegration are of the Krylov subspace type. The differences
of the Krylov subspace type, that is, the quasiminimal re-2among them depend on how the basis for spanning the Kry-
sidual (QMR) iterative method, is investigated, among oth-lov space is found and how the linear system is enforced in
ers, and found to be very efficient in this type of application.this space. A variety of convergence behaviors for these it-
Preconditioning techniques to improve the convergence arérative solvers is therefore observed, although they are all
developed which include reordering of the mesh, scaling otlosely related to the characteristics of the left-hand-side ma-
the submatrices, and other special treatments designed ftiix [A] and the right-hand-side vect{ls}. CG is derived for
improving the characteristics of the matrix of the system.symmetric positive definite linear systems, with its conver-
Besides these problem-dependent preconditioning tectgence rate depending on the condition numbdrAdf BiCG
niques, a preconditioner specially designed for frequencyis applicable to nonsymmetric systems and requires two
sweep analysis is also presented in this paper. matrix—vector multiplicationginvolving [A] or its transpose
The iterative methods currently available for solving a[AT]). The convergence behavior of BiCG is quite irregular
linear system of equatiod#\]{x} ={b} can be characterized and may suffer breakdowns. CGS is similar to BiCG and has
no matrix—vector multiplication witfAT]. It can converge
dAuthor to whom correspondence should be addressed. Electronic maif.aSter than BiCG, although the convergence is still irregular
Yijun.Liu@uc.edu and may be subject to the breakdown problem. BICGSTAB
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is an improved version of CGS designed to avoid the breakterms off A] to form the preconditioner. It is the simplest, but
down that often occurred in CGS while preserving the fasiften quite effective for some applications. The block pre-
convergence rate. GMRES works on nonsymmetric systemsonditioner is similar to the diagonal preconditioner but
directly and generates orthogonal vectors that form the basi®rmed by the small blocks on the diagonal directior] Af.
spanning the Krylov subspace. Only one matrix—vector mul-The SSOR preconditioner is formulated from the diagonal,
tiplication is required at each iteration. It minimizes the re-lower, and upper triangular parts [&]. A special case of the
sidual norm with exact arithmetic in each iteration and guarSSOR preconditioner is the diagonal preconditioner. Al-
antees the convergence in less thasteps without restart though applying the SSOR preconditioner is relatively inex-
(wheren is the number of equationsBecause the orthogo- pensive, it is unlikely to obtain a preconditioner closely re-
nal vectors at each iteration have to be generated by using aembling [A], which is the key feature of a good
the previously computed vectors, the storage requiremergreconditioner. The ILUD preconditioner is formed by drop-
and computational effort tend to increase proportionally. Inping off the nonzero elements in the factorization[Af in
order to control the storage requirement, restarts after a cepositions wherdA] has zeros. This preconditioning scheme
tain number of iterations are often needed. QMR is appliis often very effective. The drawback, besides the memory
cable to both symmetric and unsymmetric matrices with reatonsumption, is the long computing time needed even when
or complex elements. It requires two matrix-vector multipli- [A] is sparse. As a BEM formulation usually generates a
cations per iteration, both withA] and [AT]. Instead of fully populated matrix, this preconditioning scheme is not
forming the exact orthogonal vectors as in GMRES, it genfeasible. Preconditioning can also be performed in the pro-
erates a biorghogonal basis for the Krylov subspace by usingess of forming the linear system, which is problem depen-
the Lanczos process with short recurrences. Two recurrenatent. This is often more effective and economical than ge-
schemes, three-term and coupled two-term, have been develeric preconditioning. Some preconditioning schemes of this
oped. A look-ahead Lanczos algorithm has been employed tkind are presented in this paper and shown to be effective for
extend QMR to general non-Hermitian matrices and avoidhe coupled sound thin-shell interaction problems consid-
the possible breakdowns in some cases. Smooth convergeneeed, although with all the preconditioning schemes ever de-
behavior can be observed for QMR in generalF@RTRAN  veloped, the iterative solution methods in general are consid-
package QMRPACK,® has been developed, which contains allered to be less stable than direct solution methods. This
the QMR algorithms. It should be noted that a transpose-fresituation may have been changed with a preconditioning
version of the QMR, TFQMR, has also been developed andcheme developed in this paper for problems requiring
added to theQMRPACK. For a complete review on solving frequency-sweep analysis.
linear system with iterative solvers, please refer to Refs. 2  To the authors’ best knowledge, no applications of itera-
and 4 and the references therein. tive solvers for frequency-dependent problems, using the
The convergence behavior of iterative solvers varies foBEM have been reported in the literature. For static prob-
different types of applications. For a particular type of prob-lems, such as elastostatic and potential problems, the perfor-
lem, an iterative solver may or may not converge, or conimance of the iterative solvers in solving linear system of
verge more slowly than direct solvers. A suitable precondi-equations generated by the BEM have been repdrteth
tioning scheme can greatly improve the situation. IntensiveRef. 5, CGN and GMRES were applied to 2D elastostatic
research efforts have been directed to address the suitaljpeoblems with the use of diagonal, block diagonal, and ILUD
iterative solvers for all the existing applications and the cor-preconditioners. Example problems with degrees of freedom
responding preconditioning schemes. As long as a competisp to 488 were tested using double-precision arithmetic
tive iterative solver and a suitable preconditioning schemavith residual norm of 10° as the stopping criterion. The
can be identified for a particular problem, high efficiencies inpreconditioned GMRES was found to be faster than the di-
solving the linear system of equations can be expected oveect solver in general, while CGN was found not as fast with
direct solvers. or without preconditioners. In Ref. 6, GMRES, CGS,
Generic preconditioning involves finding an economi- BICGSTAB, and CGN with diagonal and block diagonal
cally invertible matrix(often referred to in the literature as a preconditioners were tested on small thermal and elastic
preconditione}, and applying the inverse of that matrix problems with 2D and 3D geometries. The largest 3D model
through multiplication to the original linear system for a new used for the elastostatic analysis contains 541 nodes. Stop-
linear system which has a coefficient matrix with more fa-ping criterion in the form of residual norm was set as 40
vorable characteristics. Clearly, it is desirable that the pre¢10~ 7 in some cas@sand 10 # for elastic and thermal prob-
conditioner resemble§A], as the new coefficient matrix lems, respectively. GMRES with diagonal preconditioning
would be close to an identity matrix. The matrix—matrix was shown to be significantly faster than the direct solver
multiplication is never computed explicitly but integrated and was the most effective solver among other iterative solv-
into the iterative process, where the factorization of the preers tested. CGS and BiCGSTAB were also found faster than
conditioning matrix is formed once, and only forward andthe direct solver when used with diagonal preconditioning. In
backward substitution processes are needed for all iterationRef. 7, the comparison of a number of iterative solvers was
The existing generic preconditioning schemes include diagperformed using two linear systemgith 250 and 1000
onal preconditioning, block diagonal preconditioning, SSORequationg generated by the BEM for a 2D potential prob-
preconditioning, incomplete LU decompositighUD), and  lem. Four different types of matrices, two from the conven-
so on. Diagonal preconditioning employs only the diagonational boundary integral equatioBIE) and the other two
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from the hypersingular BIE, were considered. GMRES with =~ #5080

no restart, BICG, and QMR outperformed other iterative 40003 | goam ooy '
schemes such as CG, CGS, CGN, and BICGSTAB, when nt ., | *@Rl=ics)
preconditioning schemes were considered for all the algo-

rithms. All the iterative algorithms were in general faster
than direct methods, even with very stringent stopping crite-~ 2303 ©
rion (10 19. In Ref. 8, a reorthogonalization scheme with
double-precision arithmetic was adopted to generate more | sz |
accurate basis vectors for GMRES, which was then used tc | @
solve a relatively large linear systefup to 4902 equations .
resulting from the BEM for 3D elastostatic problems. The = >%%%]

3.00E-03

(|Errorll,

2.00E-03 -

-
solution time in the case of 4902 equations was more thar  cooe«00 @ : ‘ . : , ‘

five times faster than that of a direct solver, even with a oot 2 e s e T s
stringent stopping criterion (10). The non-restart version ka

of GMRES was used in Ref. 8. FIG. 1. Error level for the radiation analysis of a pulsating sphere (DOF

For dynamic analyses formulated in the BEM, QMR is a=290).
very good candidate among all the iterative solvers as it is

applicable to unsymmetrical matrices with complex elementsiectors resulting from the incident wave and traction on the
and less prone to numerical breakdowns. In this paper, thner surface, respectively. Please refer to Ref. 1 for the deri-
feasibility and efficiency of the iterative solver QMR in solv- vation of (1).

ing the linear system resulting from a BEM formulation of a In this paper, the performance of the iterative solver
frequency-dependent coupled structural acoustic problem ar®MR in solving linear systems of complex equations result-
demonstrated. In the following, the stopping criterion used inng from the BEM, as shown in Ed1), is investigated. The
QMR for BEM applications is justified first. The perfor- QMR algorithm based on the coupled two-term variant of the
mance of QMR is then demonstrated by a pure acoustic afgook-ahead Lanczos procéss used. The iterative solver is
plication formulated in the BEM. The preconditioning considered converged when the relative residual norm is less

schemes developed in this paper are then described in det@fan a preset valu@ften referred to as tolerancd he rela-
and tested. Finally, the comparison of the direct solvetkjve residual norm is defined as

(LAPACK) and the iterative solver QMR for solving the

linear system resulting from the BEM formulation for a ”rnHZ_ | A%~ b2

coupled sound—structure interaction problem is presented us- Iroll2 [[Axo—bll,’ @
ing the testing cases. where{x,} is the solution vector at the end of th¢h itera-
tion, {Xq} the initial guesgusually set as a zero vecjo{r}
Il. THE ITERATIVE SOLVER FOR THE STRUCTURAL the residual vector anf} ||, the Euclidean norm. The preset
ACOUSTIC BEM tolerance has to be small enough so that reliable results can
be obtained, but not so small that computation efforts are

The detailed formulation of the unified boundary ele-
ment method for analyzing the coupled sound-structure .n\_/vasted.
teraction problem hasybztlee% presenutzd in R(lejf 1_Thue t\tjvo s!e((ls The proper value of the tolerance was studied numeri-
of ordinary differential equations corresponding to the acous- ally using the radiation problem of a pulsating sphete

L 0 ) . coupling with elastic structuyefor which the analytical so-
tic f'eld. and the elastic field in the frequency QOma|n '€ tion is available. A mesh consisting of quadratic elements
recast into two sets of boundary integral equati¢BEES),

which are coupled by the interface conditions defined on thé’mh 290 nod_es was generated over the_ surf_ace of a unit
phere for this purpose. The corresponding linear systems

wet surface of the elastic structure. After the discretization Oformed after the discretization of the BIEs were solved using

'Both direct solver and iterative solver. The error with respect

of equationd AJ{x} ={b} is obtained, which has the follow- to the analytical solution was calculated in the Euclidean

ing structure:

norm
H D 0 ,
® @ x=Xl»
Ea Taa Tab|{Uaf =9 —Uants(, (1) ||E”OTH2—W, (3)
Eb Tba Tbb Up _Ubbtb

where{X} represents the analytical solutidi} the solution
where{®} and{u} are vectors that account for the total dis- resulting from the BEM using direct solver or iterative
turbed acoustic pressure and displacement at the nodes, Blver. The error levels at eight frequencies from using direct
spectively;H] and[T] are square submatrices resulting from solver and QMR with two stopping tolerancés0 # and

the singular kernel of the BIE for acoustic field and elasto-10 °) are shown in Fig. 1. It can be seen that the direct
dynamic field, respectively[D] and [E] are rectangular solver and QMR achieved virtually the same level of accu-
submatrices obtained after applying the interface conditions;acy over all eight frequencies. The error level is in general
the subscripte andb denote the outefwet) surface and the increasing toward higher frequencies, due to the fact that
inner (dry) surface, respectively{®'} and {t,} are known there are fewer elements within one wavelength. Higher er-
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FIG. 2. CPU time consumption for the radiation analysis of a pulsating
sphere.

y4

ror levels are observed &a=3 and 6, which are in the FiG. 3. A spherical shell with uniform thicknesgouter radius-a,
vicinity of the fictitious eigenfrequencies and 2r, due to  innerradius=b, thicknesssh=a—b).
the adverse matrix characteristics although unique solutions

ha;]/.e hbeen Iguarf;]ntied by_ BurltonBaEg_ M'"?gs formdUIaft]fonobtained on a Pentium Il P@00 MHz, 256 MB RAM with
(which employs the ypirs_mgu ar Bl Ince the round-otty\npows NT operating system. An estimated value of the
errgr(on the order of 10%) is s;nall reilatlve o the discreti- - opyj fime consumption of the direct solver for the case with
zation error(on the prder of 10°), solving the linear system the largest mesh was used since the CPU time was too long
more exactly(reducing round-off errOrcann(_)t render_a more (estimated over 10 days of clock timnfor the direct solver.
_accurr]ated_r esult_ as _compare#g t?e analy;ucal SOIL(M%C'b The ratio between the time consumed by direct solver and
'?}gt € llscf:retlzar?or_l errc)_nr ISI actv|\7 ﬁsr? suppo_rte Y that by iterative solver increases as the problem size in-
the results from the iterative solver. With the stopping crite-. o osas  For the case with 7202 nodes, the iterative solver

- 4 - . .
rl;)n setas 107, ttr?e :jt_erattlve lsoIver aCh'vadtt:e sarrllet_levlelwas 86 times faster than the direct solver. It should be noted
of accuracy as the direct solverompared to the analytica that the CPU time consumption of the iterative solver is less

solution). The s.oiluti.on resulting ffom using 10 as the tol- for 4610 degrees of freedom than for 2594 degrees of free-
erance gave trivial improvement in the accuracy with respec&om, as the iterative solver is sensitive to the conditioning of

:.0 the analytltia'lf SOItlf'tlor('_:r'ﬁ' 11’ Wh”e Cc.)'{ns'umlrlgtr;[hre]ce the system. The iterative solver was applied without using
Imes moze solution time. “1he stopping criterion 1S there oreany preconditioning schemes in this pure acoustic case. From
set as 10~ for all the following test cases, since errors in the

"4 ) _ this test, the CPU time savings in solving the acoustic BEM
10" level are acceptable for most engineering purposes

Higher levels of accuracy can only be achieved by usingequatlons using the iterative solver QMR are evident.

finer meshes to reduce the discretization errors. It was ob-

served that QMR is not free of breakdowns. In fact, when th

tolerance Wgs set as 18 the iterative solver suffered ab- V. COUPLED STRUCTURAL ACOUSTICS

. . . ANALYSIS—FIVE PRECONDITIONING SCHEMES

normal termination before it reached the stopping tolerance

atka=3. This breakdown was not encountered when double  For the coupled problem, the linear system of equations

precision was usecFig. 1), as the direction vectors can be (1) has very high condition numbers in general due to the

further refined in double-precision arithmetic. mismatch of the materialéstructure and fluid A special
partitioning scheme has to be used for the direct solver to
obtain reliable solutions. The solution time can also be dra-
matically reduced by using the iterative solver, but not with-

The iterative solver was first tested with pure acousticout the help of preconditioning. The three existing precondi-

problems, i.e., without the coupling with structures. The con-ioners available in the literaturgéhe diagonal, the block-

ventional BIE for the same pulsating sphere problem dediagonal, and the SSOR preconditioneveere tested and

scribed in the previous section was discretized using six diffound not working for the applications considered. There-

ferent meshes with the total number of nodes as: 290, 1154¢re, five new preconditioning schemes are developed in this

2594, 4610, 7202, and 10370. The highest frequency feastudy. They will be referred to as scheme 1, 2, 3, 4, and 5 in

sible for each meskka=8, 16, 24, 32, 40, and 48, respec- the following sections. A steel spherical shéfig. 3) im-

tively) was employed in obtaining the corresponding CPUmersed in water will be used as the test case for the first four

time consumption. Single-precision arithmetic was used fopreconditioning schemes. The dimension of the shek is

all six cases. The saving in CPU time by using the iterative=1m, h/a=0.01, wherea is the outer radius ant is the

solver over direct solver is illustrated in Fig. 2. All data were thickness.

Ill. PURE ACOUSTICS ANALYSIS—TEST RESULT
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FIG. 4. Image of matrixA] before applying any of the four preconditioning FIG. 6. Image of matrixA] after applying preconditioning schemes 1 and 2.
schemes.

Scheme 1 reorders the nodes on the 0(“@1:) surface for the elastic domain. The diagonal dominant phenomenon
of the structure, which are used for the discretization of thdS evident in each of the four submatrices, althoyidhy]
acoustic BIE. This scheme is aimed at providing a suitable@nd[ Tya] can’t contribute to the overall diagonal dominance
numbering of the nodes in the mesh to place all the dominarff [Al. Figure 5 shows the image of the same coefficient
entries (i.e., with larger absolute valup®f the matrix as Matrix after applying scheme 1. Significant changes can be
close as possible to the main diagonal. Specifically, th@bserved in submatricepH], [Taal, [Tapl, [Tpal, and
nodes in the vicinity of every single node in the mesh will bel Tob]-
assigned node numbers close to the node number of that Scheme 2 involves reordering of all the nodes on the
node by an algorithm calculating and comparing the distanc&VO0 Structure surfaces for the discretization of the elastody-
between nodes. Figures 4 and 5 show the image of the Coelfl.amic BIE. This reordering scheme is motivated by the fact
ficient matrix [A] resumng from the Spherica| shell model that when the thickness of the shell gets smaller, the matrix
before and after applying scheme 1, respectively. The |argeentries with contributions from the nearly singular integrals
the absolute value of an entry, the darker the dot shown iecome larger. It is therefore desirable to place these entries
the image. It can be seen in Fig. 4 that f¢] and [D] closer to the main diagonal by reordering the nodes. Figure 6
submatrices dominate matri] with very large entries dis- shows the coefficient matrix after applying schemes 1 and 2.
tributed all over these submatrices. ThE,] and [E,] The entries of the zero block of the primitive matrix are now
submatrices consist of very small entr(ej;lown as a near|y mixed with the entries of th@] submatrix. It is evident that
white area in the imageThe[T..l, [Tasl, [Toal, and[Tys]  thelTaal, [Tanl, [Tral, and[Typ,] submatrices are now con-

submatrices ifA] result from the singular integral operator tributing toward the overall diagonal dominance[4f. Be-
cause of the coupling process of the two domains, the matrix

2500 [ is again extremely unbalanced witB] featuring very large
entries, whilgl E,] and[ E,] consist of very small entries.

Scheme 3 is designed to render a better scaling of the
coefficient matrix[A]. Because of the mismatch of the two
domains with quite different material properties, the entities
in [D] are much larger than those [ig]. This kind of unbal-
ance among entities in a system matrix results in a very high
condition number. A scaling factor related to material prop-
erties is used to provide a better scaling. Figure 7 shows the
resulting matrix after applying schemes 1, 2, and 3. The ma-
trix is now evidently diagonally dominant with a very clear
pattern except for thgH] submatrix.

Scheme 4 is designed to further improve the character-
istics of[A] by utilizing the inverse ofH], which is obtained
by the direct method. This preconditioning scheme is more
expensive than the previous three. However, the resulting
coefficient matrix[A] (Fig. 8 has better characteristics that
often reduce the total solution tim@cluding the time used
FIG. 5. Image of matrifA] after applying preconditioning scheme 1. for obtaining the inverse dfH]). This is due to the further
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FIG. 7. Image of matri{A] after applying preconditioning schemes 1, 2, FIG. 8. Image of matriXA] after applying preconditioning schemes 1, 2, 3,
and 3. and 4.

reduction in the condition number pA], as demonstrated in Mere frequencies are involved in a frequency sweep, the
the following test cases. more saving in CPU time can be expected. The significance

In practice, a dynamic problem often needs to be solve@f this scheme is that the iterative solver can converge much

for many frequencies. Scheme 5 is specially designed for thif@Ster than the direct solver and provide the efficiency in
kind of application. It is found that the coefficient matfix] ~ requency-sweep analyses.

at the first frequency in a frequency sweep can serve as a

perfect preconditioner for all the subsequent frequencies. A%N(A:I(_)YUSPIQE—D'FES;-'IBEEELJJIF_{?IS_ ACOUSTICS

all the system matrices for different frequency cases result

from the same geometry and boundary conditions, they re- The effectiveness of the first four preconditioning
semble each other. Any one of them can be used as a preehemes in accelerating the convergence of the iterative
conditioner for all the other cases. With the help of this pre-solver was tested first. Three different meshes for the spheri-
conditioner, a frequency sweep for a dynamic problem caral shell(Fig. 3) with 64, 256, and 576 quadratic elements,
be performed very efficiently using the iterative solver. Thewhich yield 574, 2478, and 5726 equations in the final linear
inverse of this preconditioner is never computed explicitly.system, respectively, were used. Ten test cases representing
Instead, a more economical process, the LU factorization, iall the interesting scenarios were performed using the mesh
performed and the result is stored. The matrix—vector multiwith 256 elements on the Pentium Il PC. Results from five of
plication involving the preconditioner in each iteration stepthe ten case¢case 1 with no preconditioning; case 2 with

is then obtained by one forward and one backward substitysreconditioning scheme 1; case 3 with preconditioning
tion, which consume the same amount of computation efforschemes 1 and 2; case 4 with preconditioning schemes 1, 2,
as that of a direct matrix—vector multiplication. The matrix— and 3; and case 5 with preconditioning schemes 1, 2, 3, and
vector multiplication involving the transpose of the precon-4) are shown in Table I. It was found that with the applica-
ditioner presents no extra computing effort. As the time con+tion of all the four preconditioning schemésase 5, the
sumed by each of the consecutive frequency cases can [terative solver converged at the fastest rate among all the
dramatically reduced by using the iterative solver, the overaltest cases. The condition number of the original matrix
time consumption for the frequency sweep can be much lessropped from the order of £Go the order of 16, The cor-

than that by using the direct solver for every frequency. Thaesponding CPU time consumption of the iterative solver is

TABLE |. The effectiveness of the preconditioning schemes. Note: o—not apphkedpplied; SP—single
precision; DP—double precision.

Number of
iterations CPU times)
Scheme  Scheme Scheme  Scheme
1 2 3 4 SP DP SP DP
Case 1 0 0 o] 0 >1000 >1000
Case 2 N 0 o] 0 >1000 932
Case 3 J J o] 0 >1000 933
Case 4 N N N 0 355 58
Case 5 J N J J 190 47  425.83 196.15
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FIG. 9. CPU time consumption for the coupled radiation analysis of a stee
spherical shell ff/a=0.01).

425.83 s and 196.15 s, compared to 581.38 s and 972.62 s
consumed by the direct so|ver, for Sing|e_precisi0n an@tljdy consists of 416 quadratic elements and 1188 nodes.
double-precision arithmetic, respectively. The saving in so-The structure is immersed in seawater and impinged upon by
lution effort rendered by the iterative solver over the directa plane incident wave in the positivedirection. With the
solver is C|ear|y demonstrated in this Coup|ed ana|ysisy espélse of all the first four preconditioning Schemes, the iterative
cially in the case of double precisigabout five times faster Solver could not even come close to convergence in 600
than the direct solver To show the consistency of this ap- iterations, twice as much time as the direct solver would
proach, two additional tests were performed on the samgonsume. This extremely slow convergence rate was dra-
spherical shell with the other two meshes using the four prematically changed by using the preconditioner in scheme 5.
conditioning schemes with double-precision arithmetic. TheA frequency sweep over 8 frequencies frdth=2 to kL
comparison of CPU time consumption of direct solver and=4 was performed for demonstration purpgkés the total
QMR for all the three meshes are shown in Fig. 9. The forlength of the mode!
mation time is also plotted as a reference. The effectiveness Figure 11 shows the CPU time consumption by using
of the first four preconditioning schemes is evident. QMR for each frequency case in the frequency sweep, as
To demonstrate the effectiveness of scheme 5 for th€ompared to the direct solver. The preconditioning schemes
frequency-sweep analysis, a submarine-like mdBa. 10 1, 2, 3, and 5 were used. Besides the first frequency case,
was studied next. The length of the submarine-like model igvhere the LU factorization of the preconditioner was per-
7 m, main radius 0.5 m, and the thickness of the shell 0.0formed, a great deal of savings in CPU time was achieved for
m. The result from the iterative solver with the first four all the subsequent cases. It can be seen in Fig. 11 that the
preconditioning schemes could not render fast convergend@reconditioner performed better when the frequency at which
for this slender submarine-like model in the coupled analythe calculation was conducted was closer to the frequency at
sis. With scheme 5, however, a stable result was obtained fo¥hich the preconditioner was generated. The reason is quite

the frequency-sweep analysis. The BEM model used in thi@bvious, as the system matrix obtained after preconditioning
would be closer to the identity matrix, when the two frequen-

cies are closer to each other. In light of this fact, better per-

v formance can be expected when the preconditioner is gener-

g ated at the middle frequency of a frequency span. The
condition number of the resulting linear systéwith 4158
unknowns after applying schemes 1, 2, and 3 is on the order
of 10°. Scheme 4, which is the most costly one among the
first four schemes, is found unnecessary when the precondi-
tioner provided by scheme 5 is used. Since fast convergence
is ensured by the preconditioning schemes, the CPU time
consumption at each frequency can be much less than that of
a direct solver. The more frequency steps in the frequency-
sweep analysis, the more savings in CPU time can be
achieved in the solution process. The forward-scattering and
back-scattering results of the coupled analysis using QMR
and the direct solver are compared in Figs. 12 and 13, re-

FIG. 10. A submarine-like modefmain radius-0.5m, total lengtl.7 m, ~ SPectively. The results from pure acoustic analystnsid-

and thickness 0.01 m). ering the structure as rigid and stationaaye also plotted as
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FIG. 12. Forward-scattering result at poi35, 0O, Q.

lected among others and found to be much more efficient
compared to the direct solver in solving the linear systems of
equations with complex coefficients generated by the struc-
tural acoustic BEM. Four problem-dependent precondition-
ing schemes are developed to accelerate the convergence of
the iterative solver. Double-precision arithmetic is also very
useful in improving the convergence rate.

In addition, an effective preconditionéscheme 5spe-
cially designed for frequency-sweep analysis is presented.
With this preconditioner, the iterative solver has been found
to be stable in a frequency-sweep analysis. The scheme en-
sures convergence, and the CPU time consumption is much
less than that of the direct solver in the case studied in this
paper.

To further improve the efficiency of the developed BEM
in analyzing even larger structural acoustic problems, meth-

a reference. The consistency between the results from QMRds to reduce the CPU time in the formation of the coeffi-

and the direct solver again demonstrates the efficiency ancient matrices should be explored. The formation time has

reliability of the iterative solver, and the sufficiency of using been shown to become dominant in the whole BEM process

10" “ as the stopping tolerance for the QMR solver. with the use of the iterative solveésee, e.g., Fig. )2 This
More sophisticated numerical tests, for example thosgeduction can be achieved by using, for example, the multi-

involving nonuniformly applied loads, at higher frequenciespole expansion metho@ee, e.g., Ref.)%emerging recently

or larger models, need to be studied to further fine-tune thé the BIE/BEM.

iterative solver for the analysis of coupled structural acous-
tics problems using the BEM. ACKNOWLEDGMENTS
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