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Abstract

Carbon nanotubes (CNTs) possess extremely high stiffness, strength and resilience, and may provide the ultimate

reinforcing materials for the development of nanocomposites. In this paper, the effective mechanical properties of CNT-

based composites are evaluated using a 3-D nanoscale representative volume element (RVE) based on continuum

mechanics and using the finite element method (FEM). Formulas to extract the effective material constants from so-

lutions for the RVE under three loading cases are derived based on the elasticity theory. An extended rule of mixtures,

based on the strength of materials theory for estimating the effective Young�s modulus in the axial direction of the RVE,

is applied for comparisons with the numerical solutions based on the elasticity theory. Numerical examples using the

FEM are presented, which demonstrate that the load carrying capacities of the CNTs in a matrix are significant. With

additions of the CNTs in a matrix at volume fractions of only about 2% and 5%, the stiffness of the composite can

increase as many as 0.7 and 9.7 times for the short and long CNT cases, respectively. These simulation results are

consistent with the experimental ones reported in the literature.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There has been great interest in recent years in

nanocomposites based on nanotubes or nanopar-

ticles. Carbon nanotubes (CNTs), discovered by

Iijima in 1991 (Iijima, 1991), possess exceptionally

high stiffness, strength and resilience, as well as

superior electrical and thermal properties. Many

believe that CNTs may provide the ultimate rein-

forcing materials for the development of a new

class of nanocomposites (see, e.g. Qian et al., 2002;

Thostenson et al., 2001). It has been demonstrated

that with only 1% (by weight) of CNTs added in a

matrix material, the stiffness of a resulting com-
posite film can increase between 36% and 42% and

the tensile strength by 25% (Qian et al., 2000). The

mechanical-load carrying capacities of CNTs in

nanocomposites have also been demonstrated in

some experimental work (Schadler et al., 1998;
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Wagner et al., 1998; Bower et al., 1999; Qian et al.,

2000) and simulations (Liu and Chen, 2002). All

these studies show that the CNT-based composites

have the potential to provide extremely strong and

ultra light new materials. However, enormous

challenges remain in the development of such
nanocomposites. Currently, fabrication of CNT-

based composites is still a difficult and expensive

process. Many basic issues ranging, for example,

from characterizations, experimental techniques to

simulation methods, have not been fully addressed

for the development of CNT-based composites.

Computational approach can play a significant

role in the development of the CNT-based com-
posites by providing simulation results to help on

the understanding, analysis and design of such

nanocomposites. At the nanoscale, analytical

models are difficult to establish or too complicated

to solve, and tests are extremely difficult and

expensive to conduct. Modeling and simulations

of nanocomposites, on the other hand, can be

achieved readily and cost effectively on even a
desktop computer. Characterizing the mechanical

properties of CNT-based composites is just one of

the many important and urgent tasks that simu-

lations can accomplish.

In this paper, the effective mechanical proper-

ties of CNT-based composites are evaluated using

a 3-D nanoscale representative volume element

(RVE) based on continuum mechanics and using
the finite element method (FEM). Selections of the

RVEs are discussed in Section 2. Formulas based

on the elasticity theory to extract the material

constants from numerical analysis are derived in

Section 3. Analytical results based on the strength

of materials theory to estimate Young�s modulus

in the axial direction and to help validate the nu-

merical solutions are summarized in Section 4.
Numerical examples using the FEM are presented

in Section 5. Finally, some discussions and con-

clusions are offered in Section 6.

2. RVEs for evaluations of the effective material

properties

Simulations of individual CNTs using atomistic

or molecular dynamics (MD) models have pro-

vided abundant results for the understanding of

mechanical and electrical behaviors of the CNTs

(Cornwell and Wille, 1997; Han et al., 1997; Gao

et al., 1998; Halicioglu, 1998; Sinnott et al., 1998;

Buongiorno Nardelli et al., 2000; Kang and

Hwang, 2001; Macucci et al., 2001; Srivastava
et al., 2001). However, these atomistic or MD

simulations are currently limited to very small

length and time scales and cannot deal with the

larger length scales in nanocomposites, due to the

limitations of current computing power (for ex-

ample, a 1� 1� 1 lm3 cube could contain up to

1012 atoms). Nanocomposites for engineering ap-

plications expand from nano to micro, and even-
tually to macro length scales, which must be

addressed by other simulation approaches or

combinations of MD with other approaches.

Continuum approaches based on continuum

mechanics have also been applied successfully for

simulating the mechanical responses of individual

or isolated carbon nanotubes which are treated as

beams, thin shells or solids in cylindrical shapes
(Wong et al., 1997; Sohlberg et al., 1998; Gov-

indjee and Sackman, 1999; Ru, 2000; Qian et al.,

2001; Qian et al., 2002; Ru, 2001). These studies

suggest that the continuum mechanics approach

can be applied safely to investigate the mechanical

behaviors of the CNTs when the lengths of the

CNTs are about 100 nm and above. For example,

in (Wong et al., 1997), the authors successfully
applied the simple beam theory to model CNTs

and extracted Young�s modulus of the CNT from

the force–deflection curve obtained from their ex-

periment. Their results are consistent with other

reported work. Although successful to some extent

and efficient in computation for models at larger

length scales, continuum mechanics at this

threshold faces the risk of breakdowns more than
ever before, compared with the micromechanics

simulations. The preferred approach for simula-

tions of CNT-based composites should be a mul-

tiscale one where the MD and continuum

mechanics are integrated in a computing environ-

ment that is detailed enough to account for the

physics at nanoscales while efficient enough to

handle nanocomposites at larger length scales.
Before a multiscale approach for simulations

of nanocomposites is successfully developed, the
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continuum mechanics approach seems to be the

only feasible approach now for conducting some

preliminary studies of such materials. A study of

the CNTs in a matrix was given in a recent paper

(Liu and Chen, 2002) in which the interactions of

the CNT with the matrix, interfacial stresses and
load-carrying capabilities of the CNTs are in-

vestigated based on 3-D elasticity models. It is

proposed in (Liu and Chen, 2002) that the 3-D

elasticity models, instead of beam or shell models,

should be used for the CNTs, as well as the matrix,

in order to ensure the accuracy and compatibility

of the models for the CNTs and the matrix. One

way to develop manageable 3-D continuum mo-
dels for the study of CNT-based composites is

to extend the concept of representative volume

elements used for conventional fiber-reinforced

composites at the microscale (Hyer, 1998; Nemat-

Nasser and Hori, 1999).

CNTs are in different sizes and forms when they

are dispersed in a matrix to make a nanocom-

posite. They can be single-walled or multi-walled
with length of a few nanometers or a few mi-

crometers, and can be straight, twisted and curled,

or in the form of ropes (Schadler et al., 1998;

Wagner et al., 1998; Bower et al., 1999; Qian et al.,

2000; Qian et al., 2001; Thostenson et al., 2001).

Their distribution and orientation in the matrix

can be uniform and unidirectional (which may be

the ultimate goal) or random. All these factors
make the simulations of CNT-based composites

extremely difficult. To start with, the concept of

unit cells or representative volume elements, which

have been applied successfully in the studies of

conventional fiber-reinforced composites at the

microscale (Hyer, 1998; Nemat-Nasser and Hori,

1999) can be extended to study the CNT-based

composites at the nanoscale. In this RVE ap-
proach, a single (or multiple) nanotube(s) with

surrounding matrix material can be modeled, with

properly applied boundary and interface condi-

tions to account for the effects of the surrounding

materials. Numerical methods, such as the FEM,

boundary element method (Liu et al., 2000; Chen

and Liu, 2001) or meshfree method (Qian et al.,

2001) can be applied to analyze the mechanical
responses of these RVEs under different loading

conditions.

Interfaces between the CNTs and matrix are

crucial regions to ensure the load carrying capacity

and other functionalities of the nanocomposites.

They are also the most difficult regions for any

simulation approaches. To start with, perfect

bonding can be assumed between the CNTs and
matrix in the continuum mechanics models of

CNT-based composites. Research has demon-

strated that the possibility of such a strong (C–C)

bond exists for CNT-based composites (Jia et al.,

1999; Thostenson et al., 2001). For a ‘‘less’’ perfect

bond, a spring-like model can be used between the

CNTs and matrix. A thin interphase model (e.g., a

thin coating on the CNTs) can also be introduced
to account for a third phase between the CNTs

and matrix. The properties of this interphase re-

gion can be used to characterize the interface

properties. Other interface models, such as friction

models considering the slip/stick along a CNT/

matrix interface or a van der Waals type of models

(for multi-walled CNTs (Ru, 2000; Qian et al.,

2002)) can certainly be developed for modeling
CNT-based composites, with improved under-

standing based on further nanoscale experiments

and MD simulations. In this paper, only the per-

fect bonding between the CNT and the matrix in

RVE models is considered.

Three nanoscale representative volume elements

(Fig. 1) based on the 3-D elasticity theory have

been proposed in (Liu and Chen, 2002) for the
study of CNT-based composites. They are the

cylindrical RVE (Fig. 1(a)), square RVE (Fig.

1(b)) and hexagonal RVE (Fig. 1(c)). The cylin-

drical RVE can be applied to model the CNTs

which have different diameters (Hyer, 1998) or

CNTs embedded in a regular carbon fiber. Under

axisymmetric as well as antisymmetric loading, a

2-D axisymmetric model can be applied for the
cylindrical RVE, which can significantly reduce the

computational work (Liu and Chen, 2002). Similar

to the study of conventional fiber-reinforced

composites (Hyer, 1998), the square RVE models

can be applied when the CNTs are arranged evenly

in a square array, while the hexagonal RVE

models can be applied when CNTs are in a hex-

agonal array, in the transverse direction. These
RVEs can be used to study the interactions of a

CNT with the matrix, such as the load transfer

Y.J. Liu, X.L. Chen / Mechanics of Materials 35 (2003) 69–81 71



mechanism and stress distributions along the in-

terfaces (Liu and Chen, 2002) or to evaluate the

effective material properties of the CNT-based

composites, which is the focus of this current

paper.

To start with, the cylindrical RVE will be em-

ployed first in this paper to evaluate the effective

Young�s moduli and Poisson�s ratios of the CNT-
based composites. The required mathematical re-

sults to be used to extract these material constants

from the simulation results (by using either the

FEM or other methods) will be established in the

next section.

3. Formulas for evaluations of the effective material
constants

It is assumed that both the CNTs and matrix in

a RVE are continua of linearly elastic, isotropic

and homogenous materials, with given Young�s
moduli and Poisson�s ratios. It is also assumed that

the CNTs and matrix are perfectly bonded at the

interface in the RVE to be studied. Other material
models and interface conditions (Liu and Chen,

2002) can certainly be considered in more sophis-

ticated investigations. The RVE can contain one

CNT (Fig. 2) or multiple CNTs, determined by the

main criterion that it should be large enough to be

representative of the material and small enough to

be modeled and analyzed efficiently using a solu-

tion method. Under the above assumptions, there
will be four effective material constants to be de-

termined for the CNT-based composite, namely,

two Young�s moduli Ex ð¼ EyÞ and Ez, and two

Poisson�s ratios mxy and mzx ð¼ mzyÞ (see Fig. 2 for

the orientation of the coordinates).

To derive the formulas for extracting the four

material constants, a homogenized elasticity model

corresponding to the RVE is considered. The ge-

ometry of the elasticity model is corresponding to

a hollow cylindrical RVE with length L, inner ra-

dius ri and outer radius R (Fig. 3), so that ana-

lytical solutions can be obtained. This geometry

can account for the cases when the CNT is rela-
tively long and thus all the way through the length

of the RVE. In the case that the CNT is relatively

short and thus fully inside the RVE, a solid cy-

lindrical RVE ðri ¼ 0Þ can be used for extracting

the material constants, since the elasticity solutions

are difficult to find in this case. The elasticity

model has a single material with the four effective

material constants (Ex, Ez, mxy and mzx) to be de-
termined.

The material of the elasticity model is trans-

versely isotropic and the general 3-D strain–stress

relations are given by (see, e.g. (Hyer, 1998))

Fig. 1. Three nanoscale representative volume elements for the analysis of CNT-based nanocomposites.

Fig. 2. A cylindrical RVE shown in a cut-through view.
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in the ðx; y; zÞ coordinates shown in Fig. 2. This

relation is also valid for the stress and strain com-

ponents in the cylindrical coordinate system ðr; h; zÞ
(Fig. 3(a)). To determine the four unknown mate-

rial constants, four equations based on the elas-

ticity theory will be needed. Three loading cases

(Fig. 3) have been devised as illustrated in the fol-

lowing subsections to provide four such equations.

Note that for transversely isotropic materials, the

other material constants are related to the four con-

stants (Ex, Ez, mxy , mzx) used in Eq. (1). For example,

Ey ¼ Ex; myx ¼ mxy ; mzy ¼ mzx; and

myz ¼ mxz ¼
Ex

Ez
mzx:

3.1. Cylindrical RVE under an axial stretch DL
(Fig. 3(a))

In this load case (Fig. 3(a)), the stress and strain

components at any point on the lateral surface
are

rx ¼ ry ¼ rr ¼ rh ¼ 0; ez ¼
DL
L

;

eh ¼
DRa

R
; with DRa < 0; if DL > 0;

where DRa is the radial displacement, and r and h
indicate the radial and tangential components in

Fig. 3. Three loading cases for the cylindrical RVE used to evaluate the effective material properties of the CNT-based composites. (a)

Under axial stretch DL; (b) Under lateral uniform load P ; (c) Under torsional load T .
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the polar coordinate system, respectively. From

the third equation in (1), one has immediately

Ez ¼
rz

ez
¼ L

DL
rave; ð2Þ

where the averaged stress is given by

rave ¼
1

A

Z
A

rzðx; y; L=2Þdxdy;

with A being the area of the end surface. rave can

be evaluated for the RVE using the FEM results.

Also, from Eq. (1) (applied in the cylindrical
coordinate system) and the above results, one has

eh ¼ � mzx
Ez

rz ¼ �mzx
DL
L

¼ DRa

R
:

Thus, one obtains

mzx ¼ � DRa

R

� ��
DL
L

� �
: ð3Þ

Eqs. (2) and (3) can be applied to estimate the

effective Young�s modulus Ez and Poisson�s ratio

mzxð¼ mzyÞ, once the contraction DRa and the stress

rave in load case (a) are obtained.

3.2. Cylindrical RVE under a lateral uniform load p

(Fig. 3(b))

In this load case (Fig. 3(b)), the RVE is con-

strained in the z-direction so that the plane strain

condition is maintained, in order to simulate the

interactions of the RVE with surrounding mate-

rials in the z-direction. The RVE is loaded with a

uniformly distributed load (negative pressure) p in

the lateral (radial) direction. This is an axisym-
metric case for both the geometry and loading. For

the corresponding elasticity model (Fig. 3(b)), one

has the following results for the stress and strain

components at a point on the lateral surface

(Timoshenko and Goodier, 1987):

rr ¼ p; rh ¼
R2 þ r2i
R2 � r2i

p; and eh ¼
DRb

R
;

where DRb is the radial displacement in this load

case. Applying the stress–strain relation derived

from (1) for the plane strain case (ez ¼ 0,
rz ¼ mzxðrr þ rhÞ), one has, on the lateral surface:

eh ¼ � mxy
Ex

�
þ m2zx

Ez

�
rr þ

1

Ex

�
� m2zx

Ez

�
rh

¼
�
� mxy

Ex

�
þ m2zx

Ez

�
þ 1

Ex

�
� m2zx

Ez

�
R2 þ r2i
R2 � r2i

�
p

¼ DRb

R
:

The first equation for determining Ex and mxy is

therefore found to be

� mxy
Ex

�
þ m2zx

Ez

�
þ 1

Ex

�
� m2zx

Ez

�
R2 þ r2i
R2 � r2i

¼ DRb

pR
; ð4Þ

in which Ez and mzx are assumed to have been de-

termined from Eqs. (2) and (3).

3.3. Cylindrical RVE under a torsional load T (Fig.

3(c))

Under the applied torque T (Fig. 3(c)), which is

an antisymmetric load on an axisymmetric model,

the rotation angle of the left end of the RVE is

given by (Timoshenko and Goodier, 1987)

a ¼ TL
GxyJ

; with Gxy ¼
Ex

2ð1þ mxyÞ
; and

J ¼ pðR4 � r4i Þ=2;
where Gxy is the shear modulus (in the xy plane)
and J the polar moment of inertia of the annular

cross sectional area. Thus, one obtains the second

equation:

Ex

2ð1þ mxyÞ
¼ Gxy

�
¼ TL

aJ

�
: ð5Þ

By solving Eqs. (4) and (5), one obtains the effec-

tive Young�s modulus and Poisson�s ratio in the

transverse direction (xy plane):

Ex ¼ Ey ¼ 2ð1þ mxyÞGxy

¼ 4pR3EzGxy

pREzðR2 � r2i Þ þ 2EzGxyðR2 � r2i ÞDRb þ 4pR3m2zxGxy
;

ð6Þ

mxy ¼ �1

þ 2pR3Ez

pREzðR2 � r2i Þ þ 2EzGxyðR2 � r2i ÞDRb þ 4pR3m2zxGxy
;

ð7Þ
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where Gxy ¼ TL=aJ is determined from the rota-

tion angle a.
When the CNTs are relatively short and thus

fully inside the RVE or the radii of the CNTs are

small, as an approximation, one can use a solid

cylinder RVE and apply the following simplified

equations obtained by setting ri ¼ 0 in Eqs. (6)

and (7):

Ex ¼ Ey

¼ 4pR3EzGxy

pR3Ez þ 2EzGxyR2DRb þ 4pR3m2zxGxy
; ð8Þ

mxy ¼ �1

þ 2pR3Ez

pR3Ez þ 2EzGxyR2DRb þ 4pR3m2zxGxy
: ð9Þ

Once the radial displacement DRb in case (b) and

the rotation angle a in case (c) are determined

from, for example, a finite element analysis of the

RVE, the effective Young�s modulus Ex and Pois-

son�s ratio mxy can be evaluated by using Eqs. (6)

and (7) for RVEs with long CNTs or Eqs. (8) and

(9) for RVEs with short CNTs.

4. Analytical results based on the strength of

materials theory

Some simple analytical expressions, or rules of

mixtures, based on the strength of materials theory
for estimating the effective Young�s modulus Ez in

the axial direction of the cylindrical RVEs are

summarized in this section for the convenience of

comparison. These expressions can be applied to

validate the numerical results using the FEM and

based on the elasticity formulas obtained in the

previous section. Although the strength of mate-

rials theory is not accurate for stress, especially
interfacial stress, evaluations, it is fairly accurate

and efficient in predicting the effective material

constants in the axial direction of the RVEs, which

are basically dependent on the overall responses of

the RVEs. Extended coverage of these results in

more general cases can be found in (Nemat-Nasser

and Hori, 1999; Hyer, 1998).

4.1. CNT through the length of the RVE (Fig.

4(a))

This is the case when the CNT is relatively long

(with large aspect ratio) and therefore a segment

Fig. 4. Simplified strength of materials models used to derive the analytical expressions for the effective Young�s modulus Ez.
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can be modeled using an RVE. The volume frac-

tion of the CNT (a tube, Fig. 4(a)) is

V t ¼ pðr2o � r2i Þ
pðR2 � r2i Þ

¼ r2o � r2i
R2 � r2i

: ð10Þ

Apply the strength of materials theory and assume

the matrix and CNT deform independently of each

other under the stretch DL (Fig. 4(a)). By consid-

ering the compatibility of strains and equilibrium
of stresses, one obtains the following expression

for the effective Young�s modulus in the axial di-

rection:

Ez ¼ EtV t þ Emð1� V tÞ; ð11Þ
where Em and Et are the Young�s modulus of the

matrix and CNT, respectively. This is the same

rule of mixtures as applied for predicting the ef-

fective Young�s modulus in the fiber direction for

conventional fiber-reinforced composites and is a
close approximation of or identical (if the matrix

and fiber have the same Poisson�s ratio) to the

elasticity solution (Hyer, 1998; Nemat-Nasser and

Hori, 1999).

4.2. CNT inside the RVE (Fig. 4(b))

In this case (Fig. 4(b)), the RVE can be divided
into two segments: one segment accounting for the

two ends with total length Le and Young�s modu-

lus Em; and another segment accounting for the

center part with length Lc and an effective Young�s
modulus Ec. Note that the two hemispherical end

caps of the CNT have been ignored in this deri-

vation. Since the center part is a special case of

Fig. 4(a), its effective Young�s modulus is found to
be

Ec ¼ EtV t þ Emð1� V tÞ; ð12Þ
using Eq. (11), in which the volume fraction of the

CNT V t given by Eq. (10) is computed based on

the center part of the RVE (with length Lc) only.

Again, by considering the compatibility of

strains and equilibrium of stresses, one obtains the

following expression for the effective Young�s
modulus in the axial direction:

Ez ¼
1

Em

Le

L

� ��
þ 1

Ec

Lc

L

� �
A
Ac

� ���1

ð13Þ

or in a more symmetric form:

1

Ez
¼ 1

Em

Le

L

� �
þ 1

Ec

Lc

L

� �
A
Ac

� �
; ð14Þ

in which the areas A ¼ pR2 and Ac ¼ pðR2 � r2i Þ.
Eq. (13) or Eq. (14) can be viewed as an extended

rule of mixtures compared to that given in Eq. (11),

and can be employed to estimate the effective

Young�s modulus for the case shown in Fig. 4(b)
when the CNT is inside the RVE. Eq. (13) is also a

more general result, as the result in Eq. (11) for the

case of the RVE shown in Fig. 4(a) can be recov-

ered from Eq. (13).

As an example, consider an RVE of a CNT in a

matrix with the following dimensions:

L ¼ 100 nm; Le ¼ Lc ¼ 50 nm;

R ¼ 10 nm; ro ¼ 5 nm;

ri ¼ 4:6 nm ðCNT thickness ¼ 0:4 nmÞ; and

Et ¼ 5Em:

One calculates from (10), (12) and (13)

V t ¼ 0:04871; Ec ¼ 1:1948Em and

Ez ¼ 0:9701Em;

which yields a lower effective Young�s modulus for

the composite, compared with that of the matrix,

with the given geometry. This may suggest that the

moderate increase of the stiffness of the CNT can
not compensate the loss of the material caused by

the hollow CNT. However, with the same dimen-

sions, if one has

Et ¼ 10Em; then Ec ¼ 1:4384Em and

Ez ¼ 1:0628Em;

which is a 6.28% increase for the effective modulus.

Furthermore, if the CNT has a length equal to that

of the RVE (Fig. 4(a), or Le ¼ 0, Lc ¼ L ¼ 100

nm), one has Ez ¼ Ec ¼ 1:4384Em, which is a

43.84% increase for the effective Young�s modulus
of the composite.

More parametric studies using Eqs. (11) and

(13) can be performed to obtain quick estimates of

the Young�s modulus in the axial direction of a

CNT-based composite with different sizes and

material combinations. Eqs. (11) and (13) are also

directly applicable or easily extendible to cases
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when the RVE contains more than one CNTs or

the RVE has a square or hexagonal cross section

(Fig. 1). In this paper, Eqs. (11) and (13) will be

applied in the next section to verify the FEM es-

timates of the effective Young�s moduli in the axial

direction based on the elasticity results established
in the previous section.

5. Numerical results

To evaluate the effective material constants of a

CNT-based nanocomposite, the cylindrical RVE

(Fig. 2) for a single-walled carbon nanotube in a
matrix material is studied using the finite element

method. The deformations and stresses are com-

puted first for the three loading cases (Fig. 3) de-

scribed in Section 3. The FEM results are then

processed, and Eqs. (2), (3), (6)–(9) are applied to

extract the effective Young�s moduli and Poisson�s
ratios for the CNT-based composite. Two exam-

ples are studied, one on an RVE with a long CNT
and the other on an RVE of the same size but with

a short CNT.

In all the cases, axisymmetric FEM models are

used since the RVEs have an axisymmetric geo-

metry and all the three loading cases (Fig. 3) to be

analyzed are either axisymmetric (Fig. 3(a), (b)) or

antisymmetric (Fig. 3(c)), both of which can be

handled by axisymmetric FEM models. Quadratic
(8-node) ring elements for axisymmetric problems

are employed, which are second order elements

and offer better accuracy in stress analysis.

5.1. A long CNT through the RVE

First, an RVE for a long CNT all the way

through the RVE length, similar to the one shown
in Fig. 4(a), is studied. The dimensions are: for

matrix, length L ¼ 100 nm, radius R ¼ 10 nm; for

CNT, length L ¼ 100 nm, outer radius ro ¼ 5 nm,

inner radius ri ¼ 4:6 nm (effective thickness ¼ 0:4
nm). The Young�s moduli and Poisson�s ratios

used for the CNT and matrix are:

CNT : Et ¼ 1000 nN=nm2 ðGPaÞ; mt ¼ 0:3;
Matrix : Em ¼ 5; 20; 100 and 200 nN=nm2 ðGPaÞ;

mm ¼ 0:3;

where the values of the Young�s modulus for the

matrix are representative of that of a polymer to

that of a steel. The values of the dimensions and

material constants are chosen within the wide

ranges of those for CNTs as reported in the liter-

ature (Ruoff and Lorents, 1995; Treacy et al.,

1996; Cornwell and Wille, 1997; Lu, 1997; Wong

et al., 1997; Gao et al., 1998; Krishnan et al., 1998;
Yao and Lordi, 1998; Goze et al., 1999; Salvetat

et al., 1999; Buongiorno Nardelli et al., 2000) and

can be modified or fine-tuned readily for a specific

case in future simulations.

The finite element mesh used is shown in Fig.

5(a). One layer of elements are used for the CNT in

this mesh which is found to be fine enough to

deliver converged FEM results. Small elements
comparable in sizes to those for the CNT are also

needed in the matrix surrounding the CNT to

ensure the connectivity and to avoid elements with

large aspect ratios. The FEM model is loaded with

the three load cases shown in Fig. 3. The four

material constants are extracted from Eqs. (2), (3),

(6) and (7) using the FEM results.

The FEM results for the effective material
constants of the CNT-composite studied are listed

in Table 1. The strength of materials solutions for

the effective Young�s modulus Ez is also listed in

Table 1 for comparison. The strength of materials

solutions (Eq. (11)) are identical to those using the

FEM, due to the simple geometry and load con-

dition in this example. The results reveal that the

increase of the stiffness of the composite can be
significant, especially in the CNT axial direction.

With the volume fraction of the CNT being at only

about 5%, the stiffness of the composite in the axial

direction ðEzÞ can increase by more than nine times

compared with that of the matrix, when

Et=Em ¼ 200 (CNTs in a polymer matrix). The

increases of the stiffness in the transverse direction

ðExÞ are also remarkable, from about 17% to 2.8
times when the ratio Et=Em changes from 5 to 200,

in this long CNT case.

5.2. A short CNT inside the RVE

Next, an RVE for a short CNT in a matrix, as

shown in Fig. 2, is studied. All the dimensions for
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the RVE are the same as in the previous example,
except for the CNT total length,which is reduced

to 50 nm (with the two hemispherical end caps).

The material constants used for the CNT and

matrix are the same as in the first example. The

finite element mesh used is shown in Fig. 5(b). Two

layers of elements are used through the thickness

of the CNT due to the increased complexity in the

geometry. Coupled DOF constraint is imposed for
the lateral surface under the axial load so that all

points on the surface will move the same amount

in the radial direction to simulate the constraints
from the surrounding material.

A stress contour plot of the first principal

stresses in the RVE under the axial stretch is

shown in Fig. 6. The load-carrying capacity of the

CNT is obvious. More stress analysis results for

CNTs interacting with a matrix material can be

found in Ref. (Liu and Chen, 2002). The computed

four effective material constants using the FEM
results for the RVE under the three loading cases

(Fig. 3) are shown in Table 2, along with the

Fig. 5. Axisymmetric FEM models for the RVEs (CNT thickness ¼ 0:4 nm). (a) CNT through the RVE (one layer of elements for the

CNT, 6413 nodes); (b) CNT inside the RVE (two layers of elements for the CNT, 9296 nodes).

Fig. 6. Plot of the first principal stresses for the short CNT model under the axial stretch ðEt=Em ¼ 10Þ.

Table 1

Computed effective material constants for Case (a): CNT through the RVE

Et=Em Ez=Em Ex=Em;Ey=Em mxy mzx; mzy

FEM Eq. (11) FEM FEM FEM

5 1.1948 1.1948 1.1737 0.4204 0.3000

10 1.4384 1.4384 1.3336 0.4855 0.3000

50 3.3866 3.3866 2.1502 0.4640 0.3000

200 10.6925 10.6925 3.7654 0.0431 0.3000

Note: CNT modulus Et ¼ 1000 GPa, thickness ¼ 0:4 nm, volume fraction ¼ 0:04871.

78 Y.J. Liu, X.L. Chen / Mechanics of Materials 35 (2003) 69–81



strength of materials solutions (Eq. (13)) for the

stiffness in the axial direction ðEzÞ. The increases of
the stiffness in both axial and lateral directions are

moderate for Et=Em ¼ 10, 50 and 200, due to the

small volume fraction of the CNT (about 2%). At
Et=Em ¼ 5, the two stiffness are actually dropped

due to the reason explained earlier (the increase of

the stiffness in the CNT can not compensate the

loss of the material due to the reduced volume).

All these results suggest that short CNTs in a

matrix may not be as effective as long CNTs in

reinforcing the composites.

The strength of materials solutions for the
stiffness in the axial direction ðEzÞ, using the ex-

tended rule of mixtures (Fig. 4(b) and Eq. (13)), are

quite close to the FEM solutions which are based

on 3-D elasticity, with the largest differences less

than 6%. Therefore, the extended rule of mixtures

(Eq. (13)) may serve as a quick tool to estimate the

stiffness of CNT-based composites in the axial di-

rection when the CNTs are relatively short, while
the conventional rule of mixtures (Eq. (11)) can

continue to serve in cases when the CNTs are

relatively long.

6. Discussions

The effective mechanical properties of carbon
nanotube-based composites are evaluated using a

3-D nanoscale RVE based on 3-D elasticity theory

and solved by the finite element method. Formulas

to extract the material constants from solutions for

the RVE under three loading cases are established

using the elasticity. An extended rule of mixtures,

which can be used to estimate the Young�s mod-

ulus in the axial direction of the RVE and to val-
idate the numerical solutions for short CNTs, is

also derived using the strength of materials theory.

Numerical examples using the FEM to evaluate

the effective material constants of a CNT-based

composites are presented, which demonstrate that

the reinforcing capabilities of the CNTs in a ma-
trix are significant. With only about 2% and 5%

volume fractions of the CNTs in a matrix, the

stiffness of the composite in the CNT axial direc-

tion can increase as many as 0.7 and 9.7 times for

the cases of short and long CNT fibers, respec-

tively. These simulation results, which are believed

to be the first of its kind for CNT-based compos-

ites, are consistent with the experimental results
reported in the literature (see, e.g. (Schadler et al.,

1998; Wagner et al., 1998; Bower et al., 1999; Qian

et al., 2000)). The developed extended rule of

mixtures is also found to be quite effective in

evaluating the stiffness of the CNT-based com-

posites in the CNT axial direction.

Many research issues need to be addressed in

the modeling and simulations of CNTs in a matrix
material for the development of nanocomposites.

Analytical methods and simulation models to ex-

tract the mechanical properties of the CNT-based

nanocomposites need to be further developed and

verified with experimental results. The analytical

method and simulation approach developed in this

paper are only a preliminary study. Different type

of RVEs, load cases and different solution meth-
ods should be investigated. Different interface

conditions, other than perfect bonding, need to be

investigated using different models to more accu-

rately account for the interactions of the CNTs in

a matrix material at the nanoscale. Nanoscale in-

terface cracks can be analyzed using simulations to

investigate the failure mechanism in nanomateri-

als. Interactions among a large number of CNTs in
a matrix can be simulated if the computing power

Table 2

Computed effective material constants for Case (b): CNT inside the RVE

Et=Em Ez=Em FEM

FEM Eq. (13) Ex=Em;Ey=Em mxy mzx; mzy

5 0.9665 0.9701 0.9541 0.2304 0.2987

10 1.0491 1.0628 1.0033 0.2614 0.3014

50 1.3925 1.4550 1.1608 0.3055 0.2925

200 1.6920 1.7879 1.2878 0.3043 0.2758

Note: CNT modulus Et ¼ 1000 GPa, thickness ¼ 0:4 nm, volume fraction ¼ 0:0211.
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is available. Single-walled and multi-walled CNTs

as reinforcing fibers in a matrix can be studied by

simulations to find out their advantages and dis-

advantages. Finally, large multiscale simulation

models for CNT-based composites, which can link

the models at the nano, micro and macro scales,
need to be developed, with the help of analytical

and experimental work.

The three RVEs proposed in (Liu and Chen,

2002) and shown in Fig. 1 are relatively simple

regarding the models and scales. However, this is

only the first step toward more sophisticated and

large scale simulations of CNT-based composites.

As the computing power and confidence in simu-
lations of CNT-based composites increase, large-

scale 3-D models containing hundreds or even

more CNTs, behaving linearly or nonlinearly, with

coatings or of different sizes, distributed evenly or

randomly, can be employed to investigate the in-

teractions among the CNTs in a matrix and to

evaluate the effective material properties. Other

numerical methods can also be attempted for the
modeling and simulations of CNT-based com-

posites, which may offer some advantages over the

FEM approach. For example, the boundary ele-

ment method (Liu et al., 2000; Chen and Liu,

2001), accelerated with the fast multipole tech-

niques (see, e.g. (Fu et al., 1998; Nishimura et al.,

1999)), and the meshfree methods (Qian et al.,

2001) may enable one to model an RVE with
thousands of CNTs in a matrix on a desktop

computer. Analysis of the CNT-based composites

using the boundary element method is already

underway and will be reported subsequently.
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