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Abstract

Carbon nanotubes (CNTs) demonstrate unusually high stiffness, strength and resilience, and may become an ideal

reinforcing material for new nanocomposites. However, much work has to be done before the potentials of CNT-based

composites can be fully realized. Evaluating the effective material properties of such nanoscale materials is one of many

difficult tasks. Simulations using molecular dynamics and continuum mechanics models can play significant roles in this

development. Currently, the continuum approach seems to be the only feasible approach for such large scale analysis.

In this paper, effective mechanical properties of CNT-based composites are evaluated using a square representative

volume element (RVE) based on the continuum mechanics and with the finite element method (FEM). Formulas to

extract the effective material constants from solutions for the square RVEs under two load cases are derived based on

the elasticity theory. Numerical results using the FEM show that the load carrying capacities of the CNTs in a matrix

are significant. For example, with the addition of CNTs in a matrix at a volume fraction of 3.6%, the stiffness of the

composite can increase as much 33% in the axial direction with long CNTs. These simulation results are consistent with

the experimental results reported in the literature and the earlier results using cylindrical RVEs.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Carbon nanotubes (CNTs) possess exception-
ally high stiffness, strength and resilience, as well

as superior electrical and thermal properties.

Many believe that CNTs may provide the ultimate
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reinforcing materials for the development of a new

class of nanocomposites (see, e.g., recent compre-

hensive reviews [1,2]). It has been demonstrated
that with only 1% (by weight) of CNTs added in a

matrix material, the stiffness of a resulting com-

posite film can increase between 36% and 42% and

the tensile strength by 25% [3]. The mechanical-

load carrying capacities of CNTs in nanocom-

posites have also been demonstrated in some

experimental work [3–6] and numerical simula-

tions [7,8]. All these investigations show that the
ed.
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load-carrying capacities of CNTs in a matrix is

significant and the CNT-based composites have

the potential to provide extremely strong and

ultralight new materials.

However, much work still need to be done be-
fore the potentials of the CNT-based composites

can be fully realized in real engineering applica-

tions. Evaluating the effective material properties

of such nanoscale materials is one of the chal-

lenging tasks for the development of nanocom-

posites. Computational approaches, based on the

molecular dynamics (MD) approach (for smaller

scales) and continuum mechanics approach (for
larger scales), can play significant roles in the areas

of characterizing CNT-based composites.

The MD approach has provided abundant simu-

lation results for understanding the behaviors of

individual and bundled CNTs [9–17]. However,MD

simulations of CNTs are currently limited to very

small length and time scales and cannot deal with

the larger length scales in studying nanocomposites.
Nanocomposites for engineering applications must

expand from nano to micro, and eventually to

macrolength scales. Therefore, continuum mechan-

ics models can be applied initially for simulating the

mechanical responses of the CNTs in a matrix, as

has been done in [7,8] for studying the overall re-

sponses of CNT composites, before efficient large

multiscale models are established.
The continuum mechanics approach has been

employed for quite some time in the study of in-

dividual CNTs or CNT bundles to investigate their

mechanical properties. The validity of the contin-

uum approach to modeling of CNTs is still not

fully established and the practice will continue to

be questioned for some time to come. However, it

seems to be the only feasible approach at present
to obtain preliminary results for characterizing

CNT-based composites using modeling and simu-

lations. The best argument for using this contin-

uum approach for now is simply the fact that it has

been applied successfully for studying single or

bundled CNTs, as given in Refs. [18–25]. In these

studies, the CNTs are considered as homogeneous

and isotropic materials using continuum beam,
shell, as well as 3-D solid models in the analyses of

the deformation, buckling and dynamics responses

of CNTs. Material properties such as equivalent
Young�s modulus and Poisson�s ratios, and buck-

ling modes of CNTs have been successfully pre-

dicted by using these continuum approaches.

However, cautions should be excised in applying the

continuum approach, as discussed in Ref. [7]. Em-
phasis should be placed on the overall responses of

CNTs or CNT-based composites, rather than on

the local detailed phenomena, such as interfacial

stresses or debonding, where the nanoscale MD

approach should be employed. Evaluating the ef-

fective materials properties of the CNT-reinforced

composites deals with the overall mechanical re-

sponses of the RVEs, as presented in Ref. [8] and
this paper. Thus, the continuum approach seems

adequate for this study, although further devel-

opment and validation are needed.

The modeling considerations in characterizing

CNT-based composites using the continuum ap-

proach are discussed in Ref. [7]. It is proposed that

the 3-D elasticity models, instead of beam or shell

models, should be employed for modeling the
CNTs embedded in a matrix, in order to ensure the

accuracy and compatibility between the models for

the CNTs and matrix. A method based on the

elasticity theory for evaluating effective material

properties of CNT-based composites using the

representative volume elements (RVEs) (Fig. 1) is

established and cylindrical RVEs (Fig. 1(a)) are

investigated in Ref. [8]. Formulas to extract the
effective material properties from numerical solu-

tions for the cylindrical RVEs under three loading

cases are derived. Analytical results (extended rule

of mixtures) based on the strength of materials

theory to estimate the effective Young�s modulus

in the axial direction, which can help validate the

numerical solutions, are also derived for both long

and short CNT cases in [8]. Numerical results
using the finite element method (FEM) for the

cylindrical RVEs show significant increases of the

stiffness in the CNT direction of the nanocom-

posites under various combinations of the CNT

and matrix material properties [8]. However, al-

though cylindrical RVEs are easy to use, for which

analytical solutions can be derived and efficient

2-D axisymmetric FEM models can be applied,
they are the most primitive models and can lead to

errors due to ignoring materials not covered by the

cylindrical cells.



(a) (b) (c)

Fig. 1. Three possible RVEs for the analysis of CNT-based nanocomposites [7]. (a) Cylindrical RVE; (b) square RVE; and (c) hex-

agonal RVE.

Fig. 2. A square RVE containing a short CNT shown in a cut-

through view.
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In this paper, the work initiated in [8] is extended

to square RVEs (Fig. 1(b)) for the evaluations of

effective material properties of the CNT-based

composites. New formulas based on the elasticity

theory for extracting the effective material proper-

ties from solutions of the square RVEs are derived

and numerical studies using the FEM are con-
ducted. Square 2-D RVE models containing mul-

tiple CNTs are also investigated for evaluating

the effective material constants in the transverse

directions. The numerical results from the square

RVEs are compared with those obtained ear-

lier using the cylindrical RVEs in [8]. It is found

that the cylindrical RVEs tend to overestimate

the effective Young�s moduli of the CNT-based
composites, and the square RVEs may be the

preferred models for obtaining more accurate re-

sults.
2. Formulas for extracting the effective material

constants

To derive the formulas for extracting the

equivalent material constants, a homogenized

elasticity model of the square RVE (Fig. 2) is

considered. The geometry of the elasticity model is

corresponding to a solid square RVE with length L
and cross-sectional area 2a� 2a (Fig. 3). Elasticity

solutions can be obtained under certain load cases.

The elasticity model is filled with a single, trans-
versely isotropic material that has five independent

material constants. The four effective material

constants (Young�s moduli Ex and Ez, and Pois-

son�s ratios mxy and mzx, relating the normal stress

and strain components) will be determined (see
Fig. 2 for the orientation of the coordinates). The

fifth independent material constant––the shear

modulus Gxz ð¼ GyzÞ can be obtained using a

simple (torsion) load case and will not be consid-
ered in this paper. The general 3-D strain–stress

relation relating the normal stresses (rx; ry ; rz) and

strains (ex; ey ; ez) for a transversely isotropic mate-

rial can be written as (see, e.g., [26]):
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To determine the four unknown material con-

stants (Ex, Ez, mxy and mzx), four equations will be

needed. Two loading cases (Fig. 3) have been de-

vised to provide four such equations based on the

elasticity theory, as illustrated below (for com-

parison, three load cases are needed for the cylin-

drical RVEs [8]).



Fig. 3. Two loading cases for the square RVE used to evaluate the effective material properties of the CNT-based composites. (a)

Under axial stretch DL; and (b) under lateral uniform load p.
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2.1. Square RVE under an axial stretch DL (Fig. 3

(a))

In this load case (Fig. 3(a)), the stress and strain

components on the lateral surface are:

rx ¼ ry ¼ 0; ez ¼
DL
L

; ex ¼
Da
a

along

x ¼ �a; and ey ¼
Da
a

along y ¼ �a;

where Da is the change of dimension a of the cross-
section under the stretch DL in the z-direction
(Da < 0, if DL > 0). Integrating and averaging the
third equation in (1) on the plane z ¼ L=2, one has
immediately:

Ez ¼
rave

ez
¼ L

DL
rave; ð2Þ

where the averaged value of stress rz is given by:

rave ¼
1

A

Z
A
rzðx; y; L=2Þdxdy;
with A being the area of the end surface. The value
of rave is evaluated for the RVE using the FEM

results.

Using the first (or second) equation in Eq. (1)

and the result (2), one has along x ¼ �a:

ex ¼ � mzx
Ez

rz ¼ �mzx
DL
L

¼ Da
a

:

Thus, one obtains an expression for the Poisson�s
ratio:

mzx ¼ � Da
a

� �. DL
L

� �
: ð3Þ

Eqs. (2) and (3) can be applied to estimate the

effective Young�s modulus Ez and Poisson�s ratio

mzx ð¼ mzyÞ, once the contraction Da and the stress

rave in case (a) are obtained.

2.2. Square RVE under a lateral uniform load p

(Fig. 3(b))

In this load case (Fig. 3(b)), the square RVE is

loaded with a uniformly distributed load (negative
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pressure) p in a lateral direction, for example, the

y-direction. The RVE is constrained in the z-
direction so that the plane strain condition is main-

tained, in order to simulate the interactions of the

RVE with surrounding materials in the z-direction.
Since ez ¼ 0, rz ¼ mzxðrx þ ryÞ for plane strain

cases, the 3-D stress–strain relation (1) (for normal

components) is reduced to:

ex
ey

� �
¼

1
Ex
� m2zx

Ez
� mxy
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� m2zx

Ez

� mxy
Ex
� m2zx

Ez

1
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For the corresponding elasticity model (Fig. 3(b)),

one has the following results for the normal stress

and strain components at a point on the lateral

surfaces:

rx ¼ 0; ry ¼ p; ex ¼
Dx
a

along

x ¼ �a; and ey ¼
Dy
a

along y ¼ �a;

where Dx (<0) and Dy (>0) are the changes of di-
mensions in the x- and y-direction, respectively, in
this load case. Applying the first equation in (4) for

points along x ¼ �a and the second equation in (4)

for points along y ¼ �a, one has:

ex ¼ � mxy
Ex

�
þ m2zx

Ez

�
p ¼ Dx

a
; and

ey ¼
1

Ex

�
� m2zx

Ez

�
p ¼ Dy

a
;

respectively. By solving these two equations, one

obtains the effective Young�s modulus and Pois-

son�s ratio in the transverse direction (xy plane,

Fig. 2):

Ex ¼ Ey ¼
1

Dy
pa þ

m2zx
Ez

; ð5Þ

mxy ¼ � Dx
pa

�
þ m2zx

Ez

�,
Dy
pa

�
þ m2zx

Ez

�
; ð6Þ

in which Ez and mzx have been determined from

Eqs. (2) and (3) from load case (a). Once the
changes in dimensions, Dx and Dy, are determined

for the square RVE from, for example, a finite

element analysis, Ex ð¼ EyÞ and mxy can be com-

puted from Eqs. (5) and (6), respectively.
3. Rules of mixtures based on the strength of

materials theory

Similar to the cylindrical RVE cases [8], simple
rules of mixtures can be established based on the

strength of materials theory. These rules of mix-

tures can be applied to verify the numerical results

for the effective Young�s moduli in the CNT axial

direction. More general theories and extended re-

sults, in the context of fiber-reinforced composites,

can be found in Refs. [26,27].

3.1. CNT through the length of the RVE (Fig.

4(a))

This is the case when the CNT is relatively long

(with large aspect ratio) and therefore a segment

can be modeled using an RVE. For the square

RVE, the volume fraction [26] of the CNT (a tube,

Fig. 4(a)) is defined by:

V t ¼ pðr2o � r2i Þ
4a2 � pr2i

: ð7Þ

Following Ref. [8], the effective Young�s modulus

Ez in the axial direction is found to be:

Ez ¼ EtV t þ Emð1� V tÞ; ð8Þ
where Et is the Young�s modulus of the CNT and

Em that of the matrix.

3.2. CNT inside the RVE (Fig. 4(b))

In this case (Fig. 4(b)), the square RVE is di-
vided into two segments: one segment accounting

for the two ends with a total length of Le and

Young�s modulus Em; and another segment ac-

counting for the center part with a length of Lc and

an effective Young�s modulus Ec. Note that the two

hemispherical end caps of the CNT have been ig-

nored in this simple strength of materials model.

For the center part, which is a special case of the
one shown in Fig. 4(a), its effective Young�s
modulus is found to be:

Ec ¼ EtV t þ Emð1� V tÞ; ð9Þ
using Eq. (8), in which the volume fraction of the
CNT V t given by Eq. (7) is computed based on the

center part of the RVE (with length Lc) only.



Fig. 4. Simplified strength of materials models based on the square RVEs for estimating the effective Young�s modulus Ez in the CNT

direction. (a) CNT through the length of the RVE; and (b) CNT inside the RVE (L ¼ Le þ Lc).
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Again, following Ref. [8], the effective Young�s
modulus Ez is found to be:

Ez ¼
1

1
Em

Le
L

� �
þ 1

Ec
Lc
L

� �
A
Ac

� � ; ð10Þ

which is derived based on the strength of materials

theory, in which A ¼ 4a2, Ac ¼ 4a2 � pr2i (Fig.

4(b)). This is an extended rule of mixtures com-
pared to that given in Eq. (8). Eq. (10) can be

employed to estimate the effective Young�s mod-

ulus for the case shown in Fig. 4(b) when the CNT

is relatively short and thus inside the square RVE.

In this paper, Eqs. (8) and (10) will be applied to

compare the FEM estimates of the effective

Young�s moduli in the axial direction in the fol-

lowing section.
4. Numerical examples

Several square RVE models for single-walled

CNTs in a matrix material are studied using the

FEM in this section, in order to evaluate the ef-

fective material constants of the CNT-based
nanocomposite. The deformations and stresses are

computed first for the two loading cases (Fig. 3) as
described in Section 2. The FEM results are then
processed, and Eqs. (2), (3), (5) and (6) are applied

to extract the effective Young�s moduli and Pois-

son�s ratios for the CNT-based composite. Two

numerical examples are studied, one on RVEs with

long CNTs and the other on an RVE with a short

CNT. In all the cases, quadratic solid (brick) ele-

ments are employed for the 3-D models and qua-

dratic 8-node elements are used for 2-D plane
strain models, both of which offer higher accuracy

in FEM stress analysis.

4.1. Long CNTs through the length of a square RVE

First, an RVE for a long CNT all the way

through the RVE length, similar to the one shown

in Fig. 4(a), is studied. The dimensions are: for the
matrix, length L ¼ 100 nm, a ¼ 10 nm; for the

CNT, length L ¼ 100 nm, outer radius ro ¼ 5 nm,

inner radius ri ¼ 4:6 nm (effective thickness¼ 0.4

nm, which is close to the theoretical value of 0.34

nm for CNT thickness). The Young�s moduli and

Poisson�s ratios used for the CNT and matrix are:

CNT : Et ¼ 1000 nN=nm
2 ðGPaÞ; mt ¼ 0:3;

Matrix : Em ¼ 100 nN=nm
2 ðGPaÞ; mm ¼ 0:3:
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These values of the dimensions and material con-

stants are chosen for illustration purposes only,

which are within the wide ranges of those for

CNTs reported in the literature [12,15,16,18,28–
34]. These parameters can be modified readily for a

specific case in future simulations.

First, a full 3-D finite element model containing

one CNT is used as shown in Fig. 5. One layer of

elements are used for the CNT in this mesh, which

have been found to be good enough to obtain

converged FEM results. The 3-D FEM model is

applied with the two load cases shown in Fig. 3.
From the FEM results, the four material constants

are extracted using Eqs. (2), (3), (5) and (6).

The results for the effective material constants

of the CNT-based composite from the 3-D FEM

model are given in Table 1 (first row of data). The

effective Young�s modulus Ez estimated by the
Fig. 5. A 3-D FEM model for the square RVE with a long

CNT (CNT thickness¼ 0.4 nm, with one layer of elements).

Table 1

Computed effective material constants for case (a): long CNT(s) thro

FEM model Ez=Em

FEM RM

3-D, single CNT 1.3255 1.3255

2-D, 5 · 5 CNTs – –

2-D, 10 · 10 CNTs – –

Cylindrical RVE [8] 1.4384 1.4384

Note: Modulus ratio Et=Em ¼ 10, CNT thickness¼ 0.4 nm, volume

RVEs; Ref. [8] for cylindrical RVEs).
strength of materials solutions is also listed in

Table 1 for comparison. The strength of materials

solution (Eq. (8)) is identical to that using the

FEM, due to the simple geometry and load con-

dition in this case. The results reveal that the in-
crease of the stiffness of the composite can be

significant in the CNT axial direction. With a

volume fraction of the CNT being only about

3.6%, the stiffness of the composite in the axial

direction ðEzÞ can increase by about 33% com-

pared with that of the matrix, when Et=Em ¼ 10.

Next, two plane strain (2-D) FEM models,

containing 5 · 5 and 10 · 10 CNTs, respectively,
are studied under the lateral loading (Fig. 3(b)).

The FEM mesh for the 10 · 10 CNT model is

shown in Fig. 6 and the stress plot is given in Fig.

7, which shows the typical distributions of the

stresses around a CNT. The results of the effective

Young�s modulus and Poisson�s ratio in the trans-

verse direction (xy plane, Fig. 2) are listed in Table

1 (second and third rows of data), for which the
Young�s modulus Ez and Poisson�s ratio mzx needed
in Eqs. (5) and (6) are from the above 3-D RVE

results. The results from the three models (3-D

single CNT, 2-D 5 · 5 and 10 · 10 CNT models)

are also almost identical as shown in Table 1. This

suggests that a single CNT model, either 2-D or

3-D, may be sufficient in determining the effec-

tive material constants in the transverse direction,
as has been the case in studying conventional fiber-

reinforced composites, if the reinforcing fibers

(CNTs here) are distributed uniformly in a square

pattern in the transverse direction.

For comparison, the effective material constants

obtained using the cylindrical RVE from Ref. [8],

which is of the same size (same length L and the
ugh the RVE

FEM

mzx, mzy Ex=Em, Ey=Em mxy

0.3000 0.8492 0.3799

– 0.8561 0.3745

– 0.8534 0.3745

0.3000 1.3336 0.4855

fraction¼ 3.617%; RM¼ rule of mixtures (Eq. (8) for square



Fig. 6. A 2-D (plane strain) FEM model of the RVE contain-

ing 10� 10 long CNTs (CNT thickness¼ 0.4 nm, with one

layer of elements).

Fig. 7. Plot of the first principal stresses (�p) for the 10� 10

RVE model under lateral loading (zoomed in view; Et=

Em ¼ 10).

Fig. 8. A 3-D quarter-symmetry FEM model for the square

RVE with a short CNT (CNT thickness¼ 0.4 nm, with one

layer of elements).
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diameter of the cylindrical RVE ¼ 2a of the square
RVE), are also listed in Table 1. It is seen that the

cylindrical RVE overestimates the Young�s mo-

duli. This may be explained by the fact that a cy-
lindrical RVE overestimates the volume fraction of

the CNT due to the negligence of the small amount

of matrix material (at the four corners of the

square RVE) in the cylindrical RVE.
4.2. A short CNT inside the square RVE

In this example, a square RVE for a short CNT

in a matrix, as shown in Fig. 2, is studied. 3-D
FEM models has to be employed for this case,

even for the lateral loading situation. The dimen-

sions for the RVE are the same as in the previous

example, except for the total length of the CNT,

which is 50 nm (including the two end hemi-

spherical caps). The material constants used for

the CNT and matrix are the same as in the pre-

vious example. The finite element mesh used for a
quarter symmetry model is shown in Fig. 8. Again,

one layer of elements (quadratic bricks) are used

through the thickness of the CNT. Coupled DOF

constraints are imposed on the four lateral sur-

faces under both axial and lateral loading (Fig.

3(a) and (b)), so that all points on the lateral sur-

faces will move the same amount in the normal

direction to simulate the constraints from the
surrounding material.

Stress contour plots of the first principal stresses

in the quarter model of the RVE are shown in Fig.

9 for the axial stretch case and in Fig. 10 for the

lateral loading case. The load-carrying capacities

of the CNT are obvious from these two stress

plots, which are consistent with the earlier simu-

lation results using cylindrical RVEs [7,8]. The
computed four effective material constants using

the FEM results are shown in Table 2, along with

the strength of materials solution (Eq. (10)) for the

stiffness in the axial direction ðEzÞ. The increase of



Fig. 9. Plot of the first principal stresses (�DL) for the 3-D RVE under the axial stretch DL ðEt=Em ¼ 10Þ.

Fig. 10. Plot of the first principal stresses (�p) for the 3-D RVE under the lateral load p ðEt=Em ¼ 10Þ.
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the stiffness in the axial direction is moderate for

Et=Em ¼ 10, due to the small volume fraction of

the CNT (about 1.6%). These results suggest that

short CNTs in a matrix may not be as effective as

long CNTs in reinforcing a composite. Again, for

comparison, the effective material constants ob-
tained using the cylindrical RVE in Ref. [8] are

also listed in Table 2. The cylindrical RVE again
overestimates the Young�s moduli compared with

the current square RVE model.

The strength of materials solution for the stiff-

ness in the axial direction ðEzÞ, using the extended

rule of mixtures (Fig. 4(b) and Eq. (10)), is quite

close to the FEM solution which is based on 3-D
elasticity, with a difference of only about 1%.

Therefore, the extended rule of mixtures (Eq. (10))



Table 2

Computed effective material constants for case (b): a short CNT inside the RVE

FEM model Ez=Em FEM

FEM ERM mzx, mzy Ex=Em, Ey=Em mxy

3-D, single CNT 1.0391 1.0500 0.3009 0.9342 0.3217

Cylindrical RVE [8] 1.0491 1.0628 0.3014 1.0033 0.2614

Note: Modulus ratio Et=Em ¼ 10, CNT thickness¼ 0.4 nm, volume fraction¼ 1.620%; ERM¼ extended rule of mixtures (Eq. (10) for

square RVEs; Ref. [8] for cylindrical RVEs).
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may serve as a quick tool to estimate the stiffness

of the CNT-based composites in the axial direction

when the CNTs are relatively short, while the

conventional rule of mixtures (Eq. (8)) can con-

tinue to serve in cases when the CNTs are rela-

tively long.
5. Conclusion

The effective mechanical properties of CNT-
based composites are evaluated using square

RVEs based on 3-D elasticity theory and solved by

the FEM. Formulas to extract the effective mate-

rial constants from solutions for the square RVEs

under two loading cases are established based on

elasticity. Square RVEs with multiple CNTs are

also investigated in evaluating the Young�s mod-

ulus and Poisson�s ratios in the transverse plane.
Numerical examples using the FEM are presented,

which demonstrate that the load-carrying capa-

bilities of the CNTs in a matrix are significant.

With the addition of only about 3.6% volume

fraction of the CNTs in a matrix, the stiffness of

the composite in the CNT axial direction can in-

crease as much as 33% for the case of long CNT

fibers. These simulation results are consistent with
both the experimental ones reported in the litera-

ture (see, e.g., [3–6]) and the earlier numerical ones

using the cylindrical RVEs [8]. It is also found that

cylindrical RVEs tend to overestimate the effective

Young�s moduli due to the fact that they overes-

timate the volume fractions of the CNTs in a

matrix. The square RVEs, although more de-

manding in modeling and computing, may be the
preferred model in future simulations for estimat-

ing the effective material constants, especially

when multiple CNTs need to be considered. Fi-
nally, the rules of mixtures, for both long and

short CNT cases, are found to be quite accurate in

estimating the effective Young�s moduli in the

CNT axial direction. This may suggest that 3-D

FEM modeling may not be necessary in obtaining

the effective material constants in the CNT direc-

tion, as in the studies of the conventional fiber-
reinforced composites.

Efforts in comparing the results presented in

this paper using the continuum approach directly

with the MD simulations are underway. This is

feasible now only for a smaller RVE of one CNT

embedded in a matrix. In future research, the MD

and continuum approach should be integrated in a

multiscale modeling and simulation environment
for analyzing the CNT-based composites. More

efficient models of the CNTs in a matrix also need

to be developed, so that a large number of CNTs,

in different shapes and forms (curved or twisted),

or randomly distributed in a matrix, can be mod-

eled. The ultimate validation of the simulation

results should be done with the nanoscale or mi-

croscale experiments on the CNT reinforced
composites.
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