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Abstract

The fast multipole method (FMM) is a very effective way to accelerate the numerical solutions of the methods based on Green’s functions or

fundamental solutions. Combined with the FMM, the boundary element method (BEM) can now solve large-scale problems with several million

unknowns on a desktop computer. The method of fundamental solutions (MFS), also called superposition or source method and based on the

fundamental solutions but without using integrals, has been studied for several decades along with the BEM. The MFS is a boundary meshless

method in nature and offers more flexibility in modeling of a problem. It also avoids the singularity of the kernel by placing the source at some

auxiliary points off the problem domain. However, like the traditional BEM, the conventional MFS also requires O(N2) operations to compute the

system of equations and another O(N3) operations to solve the system using direct solvers, with N being the number of unknowns. Combining the

FMM and MFS can potentially reduce the operations in formation and solution of the MFS system, as well as the memory requirement, all to O(N).

This paper is an attempt in this direction. The FMM formulations for the MFS is presented for 2D potential problem. Issues in implementation of

the FMM for the MFS are discussed. Numerical examples with up to 200,000 DOF’s are solved successfully on a Pentium IV PC using the

developed FMM MFS code. These results clearly demonstrate the efficiency, accuracy and potentials of the fast multipole accelerated MFS.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The method of fundamental solutions (MFS), also called

superposition or source method, has been studied for many

years along with the boundary integral equation and boundary

element method (BIE/BEM, see, e.g. Refs. [1–6]). The MFS

uses only the fundamental solution in the construction of the

solution of a problem, without using any integrals. It is a

natural boundary meshless method and offers several advan-

tages as compared with the BIE/BEM approach. First, meshing

a boundary with only points is certainly much easier than with

elements. Second, singular integrals are avoided in the MFS

(although singularities of the kernel still play a role). Third,

programming with the conventional MFS is significantly

simplified compared with the BEM. All these advantages

with the MFS have attracted continued interests from
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researchers. Comprehensive reviews on the MFS for various

applications can be found in Refs. [7–9]. Some recent work on

the MFS can be found in Refs. [10–13] for potential problems,

in Refs. [14,15] for elastostatic problems, and in Ref. [16] for a

boundary point method related to the MFS.

However, as in the case of the BEM, the efficiency in

solving the MFS equations has been a serious problem for

large-scale models. While the finite element method (FEM) has

been used routinely to solve models with several millions of

degrees of freedom (DOF’s), the BEM and MFS has been

limited to solving problems with a few thousands DOF’s for

many years. This is because the conventional BEM and MFS in

general produce dense and non-symmetric matrices that,

although smaller in sizes, require O(N2) operations to compute

the coefficients and another O(N3) operations to solve the

system with direct solvers.

The fast multipole method (FMM) pioneered by Rokhlin

and Greengard [17–19] can be used to accelerate the solutions

of particle interaction problems and the boundary integral

equations. With the FMM, both computing time and memory

requirement can be reduce to O(N). In the last decade, the fast
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Fig. 1. A domain V with boundary S, the collocation point x and source point y.
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multipole accelerated BEM (FMM BEM) has been developed

for solving many large-scale applied mechanics problems.

Some of the work on the FMM BEM can be found in Refs.

[20–29], which show great promises of the FMM BEM for

solving large-scale problems. For example, composite material

models containing tens of thousands of fibers [26–28], and

models of electromagnetic wave scatterings from a full aircraft

at GHz frequencies [29], all have been solved successfully by

using the FMM BEM within hours. A comprehensive review of

the FMM BEM can be found in Ref. [30]. A boundary node

method, which is also a meshless approach and accelerated by

the FMM, can be found in Ref. [31].

Because of the similarity of the BEM and MFS, it is natural

to apply the fast multipole method to accelerate the solutions of

the MFS to develop an FMM MFS. Combining the FMM and

MFS can potentially reduce the operations in formation and

solution of the MFS system, as well as the memory

requirement, all to O(N). This will be an important

improvement to the MFS for its applications. In this paper,

an FMM MFS for 2D potential problems is presented and the

developed approach can be extended easily to other cases. The

FMM formulations for the MFS are provided and implemen-

tation issues of the FMM for the MFS are discussed. Numerical

examples with up to 200,000 DOF’s are solved successfully on

a Pentium IV PC using the developed FMM MFS code. These

preliminary results clearly demonstrate the efficiency, accuracy

and potentials of the fast multipole accelerated MFS.

This paper is organized as follows: In Section 2, we review

the conventional MFS formulation for potential problems. In

Section 3, we present the complete formulations and

algorithms used in the FMM MFS. In Section 4, we show

two example problems solved by using the developed FMM

MFS code to demonstrate the efficiencies of the FMM MFS for

large-scale problems. We conclude the paper with some

discussions in Section 5.
2. Formulation of the conventional MFS

Consider the following Laplace equation governing poten-

tial problems (for example, a steady-state heat conduction

problem) in a 2D domain V (Fig. 1):

V2fðxÞ Z 0; cx2V; (1)

under the boundary conditions:

fðxÞ Z �fðxÞ; cx2S1; (2)

qðxÞh
vf

vn
ðxÞ Z �qðxÞ; cx2S2; (3)

where f is the potential field, SZS1gS2 the boundary of V, n

the outward normal, and the barred quantities indicate given

values on the boundary.

In the method of fundamental solutions, we place N

collocation points (x) on boundary S and another N auxiliary

or source points (y) outside the domain V (Fig. 1). We can show
that f given by the following expression satisfies Eq. (1):

fðxÞ Z
XN

jZ1

Gðx; yjÞmj; (4)

where

Gðx; yÞ Z
1

2p
ln

1

r

� �
(5)

is the fundamental solution for 2D potential problems, r the

distance between x and y (Fig. 1), and mj the unknown intensity

of the sources at the auxiliary points yj. The boundary

conditions in Eqs. (2) and (3) can be satisfied at the collocation

points by adjusting mj at the auxiliary points, that is, imposing

XN

jZ1

Gðxi; yjÞmj Z fi ; if xi 2S1; (6)

or,

XN

jZ1

Fðxi; yjÞmj Z qi ; if xi 2S2; (7)

where

Fðx; yÞ Z
vGðx; yÞ

vnðxÞ
ZK

1

2pr

vr

vnðxÞ
: (8)

In the conventional MFS (or superposition) approach, the

following standard linear system of equations is formed after

applying either Eq. (6) or Eq. (7) at all the collocation points xi

(iZ1, 2,.,N):

a11 a12 / a1N

a21 a22 / a2N

« « 1 «

aN1 aN2 / aNN

2
6664

3
7775

m1

m2

«

mN

8>>><
>>>:

9>>>=
>>>;

Z

b1

b2

«

bN

8>>>><
>>>>:

9>>>>=
>>>>;
; or Am Z b;

(9)

where A is the coefficient matrix, m the unknown vector and b

the right-hand side vector. Once all the values of mj are
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Fig. 2. The related points for the fast multipole expansions.
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determined by solving this equation, the potential at any point

inside the domain V or on the boundary S can be evaluated

using Eq. (4). In the modern least-squares approaches in the

MFS, the locations of the sources and the source intensities are

solved simultaneously using a nonlinear least-squares

approach, which can remove the uncertainty in determining

the distance between the sources and the boundary [7]. Also, a

smaller number of source points can be used than the number of

collocation points, and the system can be solved by using a

linear least-squares method. In this paper, however, we focus

our attention to the early version of the MFS, that is, Eq. (9), for

implementation of the fast multipole method.

The construction of matrix A in Eq. (9) requires O(N2)

operations using the kernel in Eq. (5) or Eq. (8), and the size of

the required memory for storing A is also O(N2), since A is in

general a non-symmetric and dense matrix. The solution of the

system in Eq. (9) using direct solvers such as Gauss elimination

requires O(N3) operations. Such characteristics of the

conventional MFS have limited its applications in solving

large-scale problems.
3. The fast multipole method for MFS

The fast multipole method can be employed to accelerate

the MFS for solving Eq. (9). The main idea of the FMM is to

translate the point-to-point interactions to cell-to-cell inter-

actions by using multipole expansions and translations, where

cells can have a hierarchical tree structure. Iterative equation

solvers (such as GMRES) are used in the FMM, where matrix–

vector multiplications (as for the left-hand side of Eq. (9)) are

calculated using fast multipole expansions. Using the FMM,

the solution time of a problem can be reduced to order O(N).

The memory requirement can also be reduced to O(N) since

iterative solvers do not need to store the entire matrix in the

memory.

In this section, we present an FMM for the method of

fundamental solutions. It turns out that the FMM formulations

for the MFS are very similar to those for the BEM, except for

the calculations of the moments where the integrals are

replaced by summations and the local expansion for the F

kernel sum. For completeness, we provide all the required

formulas. Details on the derivations of some of these formulas

can be found in Refs. [19,30].

For convenience, let us use the complex notation, that is,

replace the collocation point x and source point y by z0Zx1C
ix2 and zZy1Ciy2 (with iZ

ffiffiffiffiffiffi
K1

p
here), respectively (Fig. 2).

We write:

Gðz0; zÞ ZK
1

2p
lnðz0KzÞ; (10)

the real part of which gives the fundamental solution in Eq. (5).
3.1. Multipole expansion (Moments)

Assuming zc is a point close to point z (Fig. 2), that is,

jzKzcj/jz0Kzcj, we have:
Gðz0;zÞZK
1

2p
lnðz0KzÞZK

1

2p
lnðz0KzcÞCln 1K

zKzc

z0Kzc

� �� �
:

Applying the Taylor series expansion for the second log

term, we obtain:

Gðz0; zÞ ZK
1

2p
lnðz0KzcÞK

XN
kZ1

1

k

ðzKzcÞ
k

ðz0KzcÞ
k

" #
: (11)

Note that in the G kernel, z0 and z are now separated due to

the introduction of the ‘mid point’ zc, which is a key in the

FMM. Considering a group of source point, when the

collocation point z0 is far away from this group, we can

evaluate the sum
P

j Gðz0; zjÞmj on the left-hand side of Eq. (6)

by the following multipole expansion using Eq. (11):

X
j

Gðz0; zjÞmj ZK
1

2p
lnðz0KzcÞM0 C

XN
kZ1

MkðzcÞ

ðz0KzcÞ
k

" #
;

(12)

where

MkðzcÞ Z

X
j

mj for k Z 0;

K
1

k

X
j

ðzjKzcÞ
kmj; for kR1;

8>>><
>>>:

(13)

are called moments about zc, which are independent of the

collocation point z0 and only need to be computed once. After

these moments are obtained, the terms on the left-hand-side of

Eq. (6) can be evaluated readily using Eq. (12) for any point z0

away from zc which will be the center of a cell containing all

the points zj.

Note that the F kernel given in Eq. (8) is related to the G

kernel by the following expression:

Fðz0; zÞ Z nðz0Þ
vGðz0; zÞ

vz0

; with n Z n1 C in2;

in the complex notation. Thus, we can derive the following

multipole expansion for the sums on the left-hand side of
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Eq. (7):

X
j

Fðz0; zjÞmj ZK
nðz0Þ

2p

M0

z0Kzc

K
XN
kZ1

kMkðzcÞ

ðz0KzcÞ
kC1

" #
; (14)

using the same moments given in Eq. (13).
3.2. Moment-to-moment translation (M2M)

When the point zc is moved to a new location zc’ (Fig. 2), we

write:

Mkðzc0ÞZK
1

k

X
j

ðzjKzc0Þ
k
mj ZK

1

k

X
j

½ðzjKzc’ÞCðzcKzc’Þ�
k
mj:

Using the binomial formula and rearranging the terms, we

obtain:

Mkðzc’ÞZ

M0ðzcÞ; for k Z0;

K
1

k
ðzcKzc’Þ

kM0ðzcÞC
Xk

lZ1

kK1

lK1

 !

ðzcKzc’Þ
kKlMlðzcÞ; for kR1:

8>>>>><
>>>>>:

(15)

This is the M2M translation for the moments when zc is

moved to zc0 . There is only a finite number of terms in this

translation.
3.3. Local expansion and moment-to-local translation (M2L)

Suppose zL is a point close to the collocation point z0

(Fig. 2), that is, jz0KzLjOOjzcKzLj. From the multipole

expansion (Eq. (12)), we have:

f ðz0Þh
X

j

Gðz0;zjÞmj ZK
1

2p
lnðz0KzcÞM0 C

XN
kZ1

MkðzcÞ

ðz0KzcÞ
k

" #
:

(16)

Expanding f(z0) about point zL using the Taylor series

expansion, we can derive the following local expansion:

X
j

Gðz0; zjÞmj Z
XN
lZ0

LlðzLÞðz0KzLÞ
l; (17)

where the coefficients are given by the following M2L

translation:

LlðzLÞ Z

K
1

2p
lnðzL KzcÞM0 C

XN
kZ1

MkðzcÞ

ðzL KzcÞ
k

2
4

3
5; for l Z 0;

K
1

2p

ðK1ÞlC1

l

M0

ðzL KzcÞ
l
C

ðK1Þl

ðzLKzcÞ
l

2
4
XN
kZ1

l CkK1

kK1

 !
MkðzcÞ

ðzL KzcÞ
k

3
5; for lR1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(18)
The local expansion for the F kernel sum is given by:

X
j

Fðz0; zjÞmj Z nðz0Þ
XN
lZ1

LlðzLÞlðz0KzLÞ
lK1: (19)
3.4. Local-to-local translation (L2L)

If the point for local expansion is moved from zL to zL’

(Fig. 2), we have the following expression using an n-term

local expansion from Eq. (17):

X
j

Gðz0; zjÞmj Z
Xn

lZ0

LlðzLÞðz0KzLÞ
l

Z
Xn

lZ0

LlðzLÞ½ðz0KzL’ÞC ðzL’ KzLÞ�
l:

Applying the binomial formula and the relationPn
lZ0

Pl

mZ0

Z
Pn
mZ0

Pn
lZm

, we obtain:

X
j

Gðz0; zjÞmj Z
Xn

lZ0

LlðzL’Þðz0KzL’Þ
l; (20)

where the new coefficients are given by the following L2L

translation:

LlðzL’Þ Z
Xn

mZl

m

l

 !
ðzL’KzLÞ

mKlLmðzLÞ; for lR0: (21)

Note that the M2M and L2L translations for the F kernel

sum remain the same.
3.5. FMM algorithms for the MFS

The algorithms or procedures for the FMM MFS are very

similar to those for the FMM BEM (see, e.g. Ref. [30]).

However, there is a major difference, which stems from the fact

that the collocation points and source points are two different

sets of points in the MFS. Therefore, two separate tree

structures are required for the translations. The major steps in

the FMM MFS can be described as follows:

Step 1. Discretization. For a given problem, discretize the

boundary S as usual as in the conventional MFS, that

is, place a certain number of collocation points on S

and source points outside the domain, as shown in

Fig. 1.

Step 2. Determine the hierarchical cell structures. Consider

a square that covers all the collocation and source

points. Call this square the cell of level 0 (see Fig. 3).

To form the cell structure for the source points, we

start dividing this parent cell into four equal child

cells of level 1. Continue dividing in this way, that is,

take a parent cell of level l and divide it into four child

cells of level LC1. Stop dividing a cell if the number

of points in that cell is less than a specified number

(this number is 1 in the example shown in Fig. 3).



0

32

1

0

32

1

(a)

(b)

Fig. 3. Construction of the cell structures for (a) source points and (b)

collocation points.

Y.J. Liu et al. / Engineering Analysis with Boundary Elements 29 (2005) 1016–10241020
A cell having no child cells is called a leaf (the shaded

cells in Fig. 3). A hierarchical cell or quad-tree

structure covering all the source points can be formed

using this procedure (Fig. 3(a)). A similar cell

structure for the collocation points can be formed

through the same procedure (Fig. 3(b)).

Step 3. Upward pass. Consider the quad tree for the source

points and compute the moments on all cells, at all

levels with lR2, and for up to p terms, tracing the tree

structure upward. For a leaf, Eq. (13) is applied

directly for all the points in the leaf (with zc being the

centroid of the leaf). For a parent cell, the moment is

calculated by summing the moments on its four child

cells using the M2M translation, that is, Eq. (15), in

which zc’ is the centroid of the parent cell and zc the

centroid of a child cell (Fig. 2).

Step 4. Downward pass. Two cells are said to be adjacent

cells at level l if they have at least one common vertex.

Two cells are said to be well separated at level l if they

are not adjacent at level l but their parent cells are

adjacent at level lK1. The list of all the well-

separated cells from a level l cell C is called
the interaction list of C. Cells are called to be far

cells of C if their parent cells are not adjacent to

the parent cell of C. We now consider the quad tree for

the collocation points and compute the local

expansion coefficients on all cells starting from

level 2 and tracing the tree structure downward to

all the leaves. The local expansion coefficient

associated with a cell C is the sum of the contributions

from the cells in the interaction list of cell C and from

all the far cells. The former is calculated by using the

M2L translation, Eq. (18), with moments associated

with cells in the interaction list, and the latter is

calculated by using the L2L translation, Eq. (21), for

the parent cell of C with the expansion point being

shifted from the centroid of C’s parent cell to that of

C. For a cell C at level 2, we use only M2L translation

to compute the coefficients of the local expansion.

Step 5. Evaluation of the sums in Eq. (6) or (7). Suppose the

values of mj are given and the collocation point z0 is in

leaf C. We compute the contributions from source

points in leaf C and its adjacent cells directly as in the

conventional MFS. Contributions from all other cells

(cells in the interaction list of C and far cells) are

computed by using the local expansion, that is, Eq.

(17) or Eq. (19). This is done by using the local

expansion coefficients for cell C, which have been

computed in Step 4, shifting the expansion point from

the centroid of C back to the collocation point z0, and

evaluating the local expansion.

Step 6. Iterations of the solution. We update the unknown

vector in the system AmZb corresponding to Eq. (6)

or Eq. (7), and continue at Step 3 for the matrix and

unknown vector multiplication until the solution

converges within a given tolerance using the

GMRES solver.

When the problem size (N) is large, the estimated cost of the

whole process is O(N) with N being the number of the

collocation points, if the number of terms p in the multipole

expansions and the number of points in a leaf are kept constant

(see Ref. [30]).
3.6. Preconditioners for the FMM MFS

Selection of a good pre-conditioner for the FMM BEM is

crucial for its convergence and computing efficiency. It is even

more so with the FMM MFS, since the conditioning of the MFS

system is in general less suitable for using iterative solvers due

to the loss of the diagonal dominance. In this study, we use a

block diagonal preconditioner, which is formed on each leaf

using direct evaluation of the fundamental solution with the

collocation points within that leaf and their corresponding

source points, which may reside outside the leaf. This pre-

conditioner may not be efficient if the number of collocation

points in a leaf is large (for example, more than 500). Using

other forms of the pre-conditioners [32] is possible in the FMM
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MFS and will be an important subject in improving the

efficiency of the FMM MFS in other applications.
N qa fb

Conventional

MFS

FMM MFS Conventional

MFS

FMM MFS

36 K417.93852 K417.93877 401.85996 401.85994

72 K408.02599 K408.02564 385.40503 385.40503

360 K399.95961 K401.55737 377.29202 378.43467

720 K399.98451 K400.64512 377.26355 377.72789

1440 K399.99572 K400.65444 377.26004 377.71908

2400 K399.88298 K400.66282 377.25852 377.71617

4800 K399.98733 K400.67203 377.25928 377.71425

7200 K399.99616 K400.63663 377.25896 377.71365

9600 K399.89316 K400.63702 377.25741 377.77159

Exact K400.0 377.25887
4. Test problems

We present two numerical examples to demonstrate the

feasibility, accuracy and efficiency of the FMM MFS for 2D

potential problems. We compare the efficiency and accuracy of

the developed FMM MFS with those of the conventional MFS.

All the computations were done on a Pentium IV PC with a

2.4 GHz CPU and 1 GB RAM. The largest model with 200,000

equations run for less than 550 s on this PC.

4.1. An annular region

A simple potential (heat conduction) problem in an annular

region (Fig. 4) is considered, for which the analytical solution

is available. The used parameters are: aZ1,bZ1,faZ100, and

qbZ200. This gives fbZ377.258872 and qaZK400.0 in the

analytical solution on the outer and inner surfaces, respect-

ively. The source points are placed outside the domain, along

the normal directions of the boundary at their corresponding

collocation points, and with a distance of around 0.01 away

from the boundary.

We discretize the inner and outer boundaries with the same

number of points and run both the FMM MFS code and a

conventional MFS code. The conventional MFS code uses a

direct solver (LAPACK) for solving the linear system. For the

FMM MFS, the numbers of terms for both moments and local

expansions were set to 15 and the tolerance for convergence of

the solution to 10K6. The FMM MFS results converged within

10 iterations for this tolerance.

The results of fb and qa for this problem using both the FMM

MFS and the conventional MFS as the total number of points

increase from 36 to 9600 are shown in Table 1. The results for

both the FMM MFS and conventional MFS converge quickly to

the exact solution for the case with 360 collocation points. For the

larger models (e.g. with 9600 points), the results deviate slightly
a b

O

V

SbSa

Fig. 4. An annular region V.
from the exact solution for both FMM MFS and conventional

MFS, which may be caused by truncation errors. In general, the

FMM MFS is found to be equally accurate as the conventional

MFS with moderate values for the parameters in the FMM MFS.

The CPU times used for both approaches in these calculations are

plotted in Fig. 5. For comparison, the CPU time using a

conventional BEM code with constant elements is also plotted in

this figure. The figure shows significant advantage of the FMM

MFS in the savings compared with the conventional MFS as well

as the conventional BEM. For example, for the largest model with

9600 points, the FMM MFS used only about 62 CPU seconds,

while both the conventional MFS and BEM used more

than 1400 s.

It was noticed that the convergence of the FMM MFS

solutions is sensitive to the distance between the source points

and the boundary. For example, for the model with 360 points

for the annular region, converged results can be obtained with

about 10 iterations if the distance between the source points

and boundary is between 0.01 and 0.1. Smaller distances (less

than 0.01) would continue to give converged results but the

accuracies of the solutions start to deteriorate, which may be

caused by the singularity of the kernel. Larger distances

(greater than 0.1) would fail to give converged results. This

convergence issue needs further investigation for the FMM

MFS, as will be discussed in Section 5.
4.2. Thermal analysis of a square plate with circular holes

Thermal conductivity of a square plate with uniformly

distributed circular holes, or a perforated plate (Fig. 6), is

studied next using the FMM MFS. Several models of the plate,

with increasing dimensions and thus the number of holes, are

considered. Each model of the plate has a dimension of m!m,

containing a total of 2m!2m holes, with mZ1, 2, 3, ., 15,

and 20. The radii of the holes are the same (0.1) for each model

that gives a total ‘volume’ fractions of the holes equal to

12.47%. Each hole is discretized with 120 points and the outer

boundary of the plate is discretized with 400m points. Thus, the

largest model (Fig. 6) with 1600 holes (mZ20) has a total

DOF’s of 200,000. For the boundary conditions, fZ0 and

m are imposed on the left and right edges, respectively, while
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qZ0 is imposed on the top and bottom edges, and on the edges

of all the holes. Using this model, the effective thermal

conductivity of the perforated plate can be calculated by the

formula [26]:

kxðeffÞ ZK
qxðaveÞL

Df
;

where kx(eff) is the effective thermal conductivity of the plate,

qx(ave) the averaged value of the heat flux, Df the increase of

the temperature, and L the dimension of the square model, all in

the x-direction.
Fig. 6. A model of the square plate with 1600 uniformly distributed circular

holes.
Table 2 shows the calculated effective thermal conductivity

kx(eff) (xk0, with k0 being the reference thermal conductivity of

the plate without holes) using both the conventional MFS

(which can only solve models up to about 10,000 DOF’s) and

the FMM MFS. Since the holes are uniformly distributed,

theoretically speaking, the calculated kx(eff) should be inde-

pendent of the sizes of the models used. The results indeed

support this assertion, as shown in Table 2. In this example, the

numbers of terms for both expansions were set to 15 and the

tolerance for convergence of the solution to 10K6 in the FMM

MFS. Fig. 7 shows the CPU time for the FMM MFS in solving

these relatively large models, as compared with the conven-

tional MFS. It is seen that the total CPU time increases almost

linearly with the increase of the total DOF’s for the FMM MFS,

which clearly demonstrates the O(N) efficiency of the FMM

MFS in solving large-scale problems. The largest model with

200,000 DOF’s took less than 550 s on the Pentium IV PC.

Random distributions of the holes were also attempted.

However, it was found that the convergence of the solutions

were rather slow. More general cases of perforated plates with
Table 2

The effective thermal conductivity (xk0) of the perforated plate

Model (Number of

holes included)

DOF’s Conventional MFS FMM MFS

2!2 880 0.77298465 0.77298467

4!4 2720 0.77698081 0.77698068

6!6 5520 0.77595073 0.77595058

8!8 9280 0.77583410 0.77583403

12!12 19,680 – 0.77496649

20!20 52,000 – 0.77411789

30!30 114,000 – 0.77545882

40!40 200,000 – 0.77540569
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randomly distributed holes can be investigated in the future

with a more effective pre-conditioner.
5. Discussions

A fast multipole accelerated method of fundamental

solutions (FMM MFS) is presented in this paper for 2D

potential problems. Complete formulations and implemen-

tation details for the FMM MFS are provided. Numerical

examples are presented which clearly demonstrate the

efficiencies of the FMM MFS for solving large-scale problems.

The approach presented in this paper can be extended readily to

2D vector (elastostatic) problems, 3D scalar and vector

problems, as well as time-harmonic and dynamic problems.

More research need to be done to improve the developed

FMM MFS, regarding, for example, convergence of the

solutions, optimization of the tree structures, and calculations

of the domain and boundary values of the potential and its

derivatives.

The selection of the distance between the boundary and the

source points has been a nuisance associated with the

conventional MFS ever since its beginning, but it seems even

more so with the FMM MFS. This may be caused by the use of

iterative solver in the FMM and the pre-conditioner. It was

found that smaller values of the distances are needed for the

convergence of the FMM MFS solutions. This may due to the

fact that the diagonal dominance in the matrix A may be more

pronounced when the source points are closer to the boundary

and thus the pre-conditioner is more effective. In the cases of

larger values of the distances, the convergence of the FMM

MFS solutions is very slow or fails to converge at all. This may

be caused by the loss of the diagonal dominance of the matrix

and thus the pre-conditioner is less effective. The convergence

issue for the FMM MFS requires further investigations
and better pre-conditioners need to be devised. A better

solution may be to employ the modern least-squares

approaches in the FMM MFS, where the locations of the

source points are determined along with the solution of the

problem in a least-squares approach [10–13].

The algorithms of the FMM MFS can also be improved. For

example, two quad-tree structures were used in this work, one for

the collocation points (in the downward pass) and another for the

source points (in the upward pass). It is will be advantageous to

use just one tree structure for both upward and downward passes

for the MFS. This can save the memory requirement and make the

code more efficient. The calculation of the boundary and domain

values of the potential and its derivatives were done using the

direct evaluation method in this work, that is, using Eq. (4) and its

derivatives directly. It is also possible to apply the FMM to speed

up such evaluations, which can be computing intensive when the

number of data points is comparable to that of the sources.

However, this may require the construction of yet another quad-

tree structure for such data points. All these issues deserve further

investigations based on the promises indicated by this study on

the FMM MFS.
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