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short or long, aligned or oriented arbitrarily, and distributed uni-
formly or randomly. All these factors make estimates of the me-
chanical properties of fiber-reinforced composites very difficu
using the numerical methods. Often a representative volume
ment(RVE) containing only a few fibers may not be sufficient for
accurately determining the effective properties of a composite
Large-scale models with hundreds or thousands of fibers may ‘be
deemed necessary in many situations. Unfortunately, modeling‘?
bers, matrix, and possibly interphases between them as sepaf
material domains in large-scale models is beyond the limit

: ) : |
current computing power. This has been the main reason that m?)
of the current models of the fiber-reinforced composites based lé'ﬁ
the boundary integral equation and boundary element meth
(BIE/BEM) are two-dimensional ones with one or a few fiber§
considered in the RVE&ee, e.g., Ref$1-8|). These models are
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Introduction

Modeling can play an important role in the analysis and desii
of fiber-reinforced composite materials. Mechanical properti
and possible failure modes of these composites can be predic
early during the design stage using modeling techniques. Ho
ever, modeling fiber-reinforced materials presents many ch
lenges to numerical methods. Fibers in a composite can have
ferent properties, shapes and sizes. They can be straight or cur\?e

A Fast Boundary Element Method
for the Analysis of Fiber-
Reinforced Composites Based on
a Rigid-Inclusion Model

A new boundary element method (BEM) is developed for three-dimensional analysis of
fiber-reinforced composites based on a rigid-inclusion model. Elasticity equations are
solved in an elastic domain containing inclusions which can be assumed much stiffer than
the host elastic medium. Therefore the inclusions can be treated as rigid ones with only six
rigid-body displacements. It is shown that the boundary integral equation (BIE) in this
case can be simplified and only the integral with the weakly-singular displacement kernel
is present. The BEM accelerated with the fast multipole method is used to solve the
established BIE. The developed BEM code is validated with the analytical solution for a
rigid sphere in an infinite elastic domain and excellent agreement is achieved. Numerical
examples of fiber-reinforced composites, with the number of fibers considered reaching
above 5800 and total degrees of freedom above 10 millions, are solved successfully by the
developed BEM. Effective Young's moduli of fiber-reinforced composites are evaluated for
uniformly and “randomly” distributed fibers with two different aspect ratios and volume
fractions. The developed fast multipole BEM is demonstrated to be very promising for
large-scale analysis of fiber-reinforced composites, when the fibers can be assumed rigid
relative to the matrix materials{DOI: 10.1115/1.1825436

adequate for the study of local properties, such as interfacial
rgresses and fractures, of a composite, but are often not sufficient
r evaluating the overall mechanical properties of the composite.

el%éarefore, models that can capture the overall behaviors of a com-
R,c_)site without overwhelming computing resources are needed and

ill be beneficial in large-scale simulations. Using the rigid-
(llrﬁ(_:lusion model seems to be a feasible first step in large-scale

ir(rjmlations for investigating the interactions of fibers, load trans-
er mechanism and effective properties of a composite. The rigid-

nclusion approximation is valid when the fibers have much
%igher values of stiffness compared with that of the matrix. This
g_proximation can significantly reduce the modeling complexity
or the analysis, as will be demonstrated in this paper.
There are two approaches regarding whether or not to further
implify the geometries for modeling rigid inclusions. One ap-
roach treats the rigid inclusions as they are without further sim-
)Hging their geometries, which consequently requires 3D models
or figid inclusions. The other approach treats slender rigid inclu-
ons, as in the case of long-fiber-reinforced composites, as rigid-
e inclusions, where the geometry of an inclusion is reduced to a
6?18' This rigid-line inclusion model is valid when the aspect ratio

n inclusion is large. It is also efficient in modeling of rigid-line

inclusions because of the simplified geometry. Only 2D models of
rigid-line inclusions in a medium have been studied so far.
In the analysis of rigid-line inclusions, also called anticracks in
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in the literature. Boundary integral equation and boundary ele-
ment method have been found especially suitable for the analysis
f rigid-line inclusions, since cracks in 2D, the counter part of
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u, Chandra and Huang made considerable contributions to the
study of rigid-line inclusions in a matrix using the boundary inte-
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gral equation method for 2D cases. Some of their analytical and s\
numerical results can be found in Ref$0-14. In these works, "
the rigid lines embedded in an infinite space are represented by
distributions of tractions along the rigid lingas compared to =
distributions of dislocations for crackand integral equations are cm——
established using the Green'’s functions. The interactions of rigid
lines with cracks and the effects of rigid lines on the effective 3
elastic material properties of composites were successfully studied x — /
using this approach for 2D moddl$0—-14. Extensive review of —— S,
the earlier theoretical work on the elasticity study of rigid-line x
inclusions in a solid can also be found in Réfs0—14. Recently, 2
there seems to be a renewed interest in the study of rigid-line v
inclusions using the BIEs. In Rdf15], Leite, Coda, and Venturini 1
reported a 2D BEM coupled with the finite elements that are used o i : 3 L
to model the bar inclusions in a matrix. These bar inclusions/d: 2 A 3D infinite elastic medium  (R*) embedded with rigid
. ) . . _ ... __inclusions
representing fibers in a matrix, are assumed to be rigid within any
cross section of a bar, but can deform along the axial direction in
their models. The displacement and stress fields near the line in-
clusions are studied by this approach. In a recent Wb8k Dong, workers[26] have formulated the BIE for 3D elastic inclusion
Lo, and Cheung developed a hypersingular BIE approach for theoblems using the FMM. Solutions for up to 343 spherical voids
analysis of interactions of rigid-line inclusions with cracks in a 2bn an elastic domain were computed using their parallel FMM
elastic medium. Stress intensity factors at the tips of rigid lines aBEM code (with total DOFs about 400 000 26]. Some other
computed with this hypersingular BIE approach and comparegvelopment of the fast multipole BEM can be found in Refs.
with analytical solutions. In all the results mentioned above, on[®27], [28] for general elasticity problems, and[i29—37 for crack
2D models with a small numbéless than 1Dof rigid-line inclu-  problems. With the advances of new composites, new modeling
sions have been considered. Most recently, Nishimura and Lapproaches that can handle even larger numbers of fibers in an
[17] used the fast multipole BEM to solve rigid-line inclusionRVE need to be developed. The rigid-inclusion approach seems to
models in the context of 2D thermal analysis. The rigid-line corbe a feasible first approximation with the current computing ca-
cept in the thermal case means line inclusions with much higheabilities. All these demands in materials research and progresses
thermal conductivities than that of the matrix material. A hypeiin the BEM suggest that the rigid-inclusion models and the fast
singular BIE was employed and up to 10 000 line inclusions wergultipole BEM may play a significant role in the analysis of fiber-
studied. The effective thermal conductivity of a 2D medi(thin  reinforced composites.
films) containing rigid lines were successfully evaluated using the In this paper, a new BIE formulation is presented for the analy-
2D RVEs embedded in an infinite plane in REE7]. sis of rigid inclusions in a general 3D isotropic elastic medium
In the case of modeling rigid inclusions as 2D or 3D objectgased on the general direct BIE formulation. The BIE contains
without simplifying their geometries, Ingber and Papathanasiou§ly the displacement kernel and the influence of the traction
work [18] seems to be the only reported one using the bounddfgrmel is implied in the coefficient of the free displacement term.
element method. The full conventional BIE for Navier’s equatioflthough this integral equation is essentiallyot exactly a Fred-
governing anincompressime'nedium Containing r|g|d fibers is holm integral equation of the first kind, it is suitable for numerical
solved in[18] in order to determine the effective moduli of com-solutions with iterative solvers because a good preconditioner is
posites with different fiber volume fractions and aspect ratiodvailable. The BEM accelerated by the fast multipole method is
Constant boundary elements were employed to discretize the BIged to solve the established BIE and the preconditioned system
which contains the singular as well as weakly-singular kernel@f equations is found to be well conditioned. The analytical solu-
Parallel computing was used to solve the BEM equations. Up #§n of a rigid sphere in an infinite elastic domain is used to
200 short, aligned rigid fibers, with the total degrees of freedoM@lidate the developed BEM code and excellent agreement is
(DOFs9 of about 12 000, were successfully solved by the deveichieved. Examples for modeling fiber-reinforced composites,
Oped BEM approach_ Very good agreement of the evaluated eﬁth the number Of f|bers reaChlng abOVe 5800 and total DOFs
tive moduli using their BEM approach and analytical results i@0ove 10 millions, are successfully solved by the developed fast
reported in[18], which clearly demonstrates that the rigid-fibefnultipole BEM. Effective Young’s moduli of fiber-reinforced
model is very promising and the BEM is very efficient for anacomPposites are evaluated for uniformly and “randomly” distrib-
lyzing fiber-reinforced composites. In the field of fluid mechanic&!ted and oriented fibers with two different aspect ratios and vol-
there are many research results concerning the flows of fluid@e fractions. The developed fast multipole BEM is demonstrated
around rigid solids. Two recent references using the bounddf € Very promising for large-scale analysis of fiber-reinforced
element method for modeling rigid bodies in fluids can be fourfPMPosites, when the fibers can be assumed rigid relative to
in Refs.[19], [20]. In particular, in Ref[19], an indirect BIE of the matrix. It can also be applied to modeling other inclusion
the first kind using the single-layer potential is developed for sol"oPlems.
ing Stokes equations and this approach is found to be very stable
and more amenable to fast iterative solvers. 2
The boundary element method based on the BIEs is a natufal . .
way to model inclusion problems, due to its reduction of the dR19id Inclusions
mension of the problem domain and high accuracy. With the de-The boundary integral equation for the analysis of an elastic
velopment of the fast multipole method6MM) (see a recent domain containing rigid inclusions is derived in this section. This
review in Ref.[21]) for solving boundary integral equations, largenew and simplified BIE formulation contains only one integral
models with several million degrees of freedom can be solvevith the displacement kernel and thus can facilitate more efficient
readily on a desktop computer. Rokhlin, Greengard, and coemputation. Consider a 3D infinite elastic dom&irembedded
workers, who pioneered the FMM, have done extensive reseawtth n rigid inclusions(Fig. 1). The matrix is loaded with a re-
on the FMM for inclusion problems in the context of potentiamote stress or displacement field. The displacement at a point
fields as well as elastic fields in two-dimensional domdsee, inside the domain is given by the following direct representation
Ref. [22] and related papers in Reff23-25). Rodin and co- integral(see, e.g.[32)):

S

BIE Formulation for an Elastic Medium Containing
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in which no jump term arises since thekernel is only weakly
U(X)=f[U(X:Y)t(Y)*T(le)U(Y)]dS(y)JrUm(X), VxeV,  singular[34—-37. This BIE for rigid-inclusion problems is ex-
S tremely compact and simple, in which only the weakly-singular
(1) kernel needs to be handled. Analytical solutions for rigid-
whereu andt are the displacement and traction vectors, respeificlusion problems may be obtained for simple geometries by
tively; S=U,S, with S, being the boundary of theth rigid using this BIE formulation.
inclusion(Fig. 1); andu” the undisturbed displacement field when Although the BIE(6) for rigid inclusions are much simpler to
a remote stress or displacement field is applied and the rigid #tandle than the BIE for elastic inclusions, it requires additional
clusions are not prese(ithis term is similar to that for an incident considerations, that is, the rigid-body motions of each inclusion,
wave in the elastodynamic caf28]). For a finite domain model, expressed by Eq2) that contains six unknowr(sl andw vectors
this term will not be present in Eq1). The two kernel functions for each inclusion. Additional equations are needed to supplement
U(x,y) and T(x,y) in Eq. (1) are the displacement and tractionBIE (6). These equations can be obtained by considering the
components in the fundamental soluti@elvin’s solution, re- equilibrium of each inclusion, that is, the followingix scalay
spectively, which can be found in any BEM referenc¢ese, e.g., €quations:
[34-37).

Before we let the source point approach the boundarg to f t(y)dS(y)=0; (7
derive the boundary integral equation, we first consider the rigid- S,
body motions of each inclusion. For a rigid inclusion enclosed by
S, , the displacement at any poipican be described by the rigid- f p(y) X t(y)dS(y)=0; )
body motions as: s

(3

u(y)=d+ wXp(y), (2) for «=1,2,...n. Expression(7) represents the equilibrium of
the forces, while expressid8) that of the moments, for the rigid
inclusions. BIE(6) and Egs.(2), (7), and(8) are simultaneously
solved to obtain the unknown rigid-body motiodsand w, and
tractiont for all the inclusions.

It should be pointed out that BIE if6) is essentially a Fred-
holm integral equation of the first kind, although not exactly since
it contains additional finite number of unknowdsind e for each

~ - ~ ~ inclusion. Integral equations of the first kind are usually consid-
0=f [UxYty) = T(x,y)u(y)]dS(y), VxeV, (3) ered not suitable for numerical solutions with iterative solvers.
Sa This problem can be resolved in two ways. Namely, we either
wherel andt are the displacement and traction vectors, respeeonvert the BIE into an equivalent equation of the second kind, or
tively, for this complement problem)=U andT=—T as in Eq. use a preconditioner after the discretization. One may possibly
(1) (the normal for the region enclosed 18y is in the opposite replace BIE(6) by a second kind integral equation of the follow-
direction ofn shown in Fig. ). Any rigid-body motion is a solu- ing form as one uses instead the traction equation corresponding
tion to the elasticity equations for the complement problem. Thui, (6):
the following solution:
U(y)=u(y)=d+wXp(y), Tt(y)=0 ()= LTU(X,y)t(y)dS(y)+Tu°°(x), VxeS=US,,

a

whered is the rigid-body translational displacement vectarthe

rotation vector, angh a position vector for poing measured from
a reference poinfsuch as the center of the inclusjo€onsider a
complemenproblem in the interior region enclosed I8, and

filled with the same material as that of domain Then the fol-
lowing representation integral holds:

satisfies the representation integdl. Substituting these results

into (3), we obtain: whereT is the traction operator which is applied %o Unfortu-

nately, the solution to this equation is not unique. We therefore
decided to use BIE6) for the analysis since we can find a good
J’ T(x,y)[d+wXp(y)]JdS(y)=0, VxeV, preconditioner for the system obtained after discretizatiot6pf
Sa as we shall see later.
or In 2D, BIE (6) will degenerate in the limit as the aspect ratio of
an inclusion tends to infinity, that is, equations generated by using
_ BIE (6) on the two opposing boundaries of a slender inclusion
L TOoy)u(y)dS(y)=0,  VxeV, “) will be identical and thus not enough equations will be available
) o for solving the BIE for separate tractions. In this case, the sum of
for the region enclosed b§, («=1,2, ... n). This is exactly the tractions across the inclusion can be used as a new variable in BIE
second integral with thd kernel in Eq.(1) on one inclusion. () to derive a new equation. Different Green’s function formula-
Therefore, the integral in Eq1) involving the T kernel vanishes tions can also be employed to consider rigid lines based on the

(el

and Eq.(1) reduces to: work in Refs.[9-15], which may turn out to be equivalent with
the equation based on BIE). Like the crack cases, hypersingular
u(x)= f Ux,y)t(y)dS(y) +u”(x), VxeV, (5) BIE formulations can also be applied, as has been done recently in
s [16] for 2D elasticity, and irf17] for 2D thermal analysis of line

jinclusions. New BIE formulations for rigid-line inclusion prob-

for all rigid inclusions §=U_,S,). This representation integra . ) .
9 S aSa) P 9 |ﬁ['ns in 3D, however, still remain to be developed.

can be applied to evaluate the displacement field at any po
inside the domaiiv, once the tractions on the surfaces of the rigi% .
inclusions are obtained. The stress field at any point in the domain 1 N€ Fast Multipole Method
can also be evaluated by taking derivatives of expres@pand The fast multipole methof21-31] is employed to accelerate
applying the Hook’s law. the BEM solution of the BIE for rigid inclusions. In recent years,
To obtain the traction values on surfaces of the rigid inclusionthe fast multipole method has been demonstrated to be especially
we let the source point approach the boundayto arrive at the good for solving problems with large numbers of cracks and in-
following boundary integral equation: clusions in both 2D and 3D cases. Using the fast multipole
method for the BEM, the solution time of a problem is reduced to
u(x)= f Ux,)ty)dS(y)+u*(x), VxeS=US,, (6) orderO(N), instead 0fO(N?) as in the traditional BEMwith N
s a here being the number of equatipn¥he memory requirement is
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also reduced since the iterative solysuch as GMRESdoes not found sufficient for most problems. Further details of the FMM in
require the storage of the entire matrix in the memory. Thus, lartfee context of general 3D elastostatic problems and used in this
models that had to be solved on a supercomputer in the past @ark can be found in Ref§38,39.
now be solved on a desktop computer. The fast multipole BEM code developed for the current analy-
In the following, we briefly list the main results of the fastsis of rigid inclusions in 3D elastic media is based on the FMM
multipole method for the developed BIE) to show the essence BEM code that was developed at the Kyoto University for general
of this powerful approach to solving BIEs. Complete formulationslasticity problemg38]. This earlier FMM code has been tested
and steps in implementations of the FMM for elastostatic prolen some large-scale stress analysis problems of regular structures.
lems can be found in Ref§38,39. Other formulations using dif- More details on the FMM for the BEM and its implementations in
ferent FMM approaches for general elasticity problems can Iselving other types of problems can be found in RE24], [39].
found in Refs[26-28.
We start with the following form of the fundamental solution
(index notation is employed here, where repeated indices imply Discretization of the BIE

summation The boundary element method, accelerated by the fast multi-
1 2 Nu 9 Xy, pole method, is applied to solve BI@®) together with Eqs(2),
Uij(xy) = 8mn i Nt 2% (9_X. il (9) (7), and(8). In this paper, constant triangular boundary elements

are used to discretize these equations over the surfaces of the
where\ andu are the Lameonstantsg;; the Kronecker symbol, inclusions. One node is placed on each surface element and the
andr=r(x,y) the distance between the source poirind field field variable(traction is assumed to be constant over each ele-
pointy. The following identity holds: ment which is a flat triangular area defined by its three corner
R points. Although constant elements may not be as accurate as
1 — — linear or quadratic surface elements, they have certain advantages
W:ngo m:z_n Sh.m(OX) R m(OY), (10)  over other higher-order elements. For example, all the integrals
o involved in using the constant elements can be evaluated analyti-
for |Oy|<|Ox|, in which O represents a third poinR, , and cally in both 2D and 3D case¢As a matter of fact, it is not
S,m are solid harmonic functions defined in Ref88,39, and impossible to carry out analytical integrations for any planar ele-
() means the complex conjugate. Substitutiag) into (9), we Ments with arbitrary polynomial basis functions. But the results
arrive at: will be quite complicated.This avoids the use of any numerical
integration in the BEM and hence guarantees the accuracy in the

%

1 S & o evaluation of all integrals when the source poiris very close to
Uij(x,y) = WE > [Fij n.m(OX)Ry m(Oy) an element of integratiofwhich happens when many inclusions
B n=0 m=-n are closely packed in a model
R If the nodes are grouped together for each inclusion, numbered
T Ginm(OX)(0Y);Rm(OY)], 11 on one inclusion after another, then a discretized form of the BIE
where, (6) can be written as:
_ \+3 I TS _ ~ Uy Uy o Ul = ~
Fipnm(O%) = =t 8y S m(0%) = = (OX) 1=~ Sy m(OX), TN v A I
n, N2u ' AN 2u ax; T, Uy Uy o Unl | T [
0= . . . S0t . , (15)
G @)=t g (B%) i o ) g
in, - oy On, : u ~ ~ ~ t ”
hmm N+2u 9X; m n Uy U - Unp n Uy

The significance of expressidal) is that (tlf;e kernel(Jzi)j(x,y) IS wheren s the total number of inclusions being considei&gand
now a sum of functions in the form df;”(x—O)k;”(y—0), 7T, the nodal displacement and traction vector for inclusian
which will facilitate integrations independent of the source pint respectivelyli” the given remote displacement vector evaluated

and thus reduce the number of integrals to compute. To see this

is, . . . . . .
consider the integral in BIE5) on a subdomais, of Saway from Offinclusiona; andU,s the coefficient marix obtained from the
the source poink. Applying expressior11), with point O being (analytica) integration of the displacement kernel over inclusion
close to subdoméis we obtain- ! B when the source pointis located on inclusiom. From Eq.(2),

0 .

the nodal displacement vector on an inclusionan be related to

1 =0 _) the rig_id-body trar]slatiod and rotationw of that inclusion by the
J' Ui (x, )t (y)dS(y) = @20 2 [Fijnm(OX)M;  m(0)  following expression:
n=0 m=-n
> ug 2]
+G; OX)M,, m(O)], 12 ~ u a
|,n,m( ) n,m( )] ( ) U= :2 _ :2 ¢a:Aa¢a, (16)
in which, : .
Un am
Mj'nym(O):f Rn'm(GX/)tJ(y)dS(y), (13) in which u; is the nodal displacement vector at nadévith m
So being the number of nodes on inclusiaj g the transformation
matrix for each node on inclusiona given by[see Eq(2)]:
Mp,m(0)= L (OV);Rom(OY)(y)ASY),  (14) 100 0 ps —p

are called themultipole momentdor given n and m. Note that a=|0 1 0 =ps O Pu |, an
these four moments are independent of the location of the source 0 0 1 p, —p1 O

pointx and thus only need to be calculated once for all locations,
of the source point away frorg, (S, will be a cell in FMM and - : ; I :

O will be the center of this cell To evaluate the integral using Eq.gnd fl_nally " (1-6)' P '.S the rigid-body displacement vector for

o Tinclusion «, defined by:

(12), only a small number of terms are required in the expansion.
For example, using ten terms farin these expansions has been ©,=[d; dy d3 ®; w, o], (18)

th p, being the component of the position vecpfor nodei;
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for «=1,2,...n. The system of equation(45) is supplemented 3
with the following ones from discretizations of Eq%) and(8) on
each inclusionu:

B,f,=0, (19)

for «a=1,2,...n, in which B, is a 6X3m coefficient matrix
obtained by evaluating Eqé7) and(8) on inclusiona.
With results in(16)—(18), the discretized BIE15) and Eq.(19)

can now be combined to provide the following form of the system 2
of equations:
-_011 _012 _Dln Ap 0 - 0] PRSI
~ ~ ~ v
—Uxn —Uxp v —Uyp 0 A %l 1
. . . . . 2
. ' . . Fig. 2 Arrigid sphere in an infinite elastic domain v
—Up —Up v —U,, O 0 - Ay Tn
B, 0 0 ¢1
0 B, 0 “2 P, 0 0 Q O '
: L ¢n) o P -+ 0 0 @
L O 0 B, 0 O 0 L S oo
rﬁslc\ M—lz 0 0 pn 0 0 Qn
ﬁ; R, 0 - 0 S 0o - o’
N'x 0 R 0O O 0
u . .
= O” ' (20) :
0 L0 O R, 0 O S
: where
. 0) U -1
P Qi | —Ui A for inclusion i =12
There are 8l+6n equations in the above systefwith N=m R S| | B ol or Inciusion 1=1,, ... n.

Xn, being the total number of nodes on all inclusipnshich are (22)
sufficient for solving the & unknown rigid-body displacements . . . . . . )
and rotations ¢,) of then inclusions, and the I8 unknown trac- Physically speaking, inverting the matrix on the right-hand side of
tion componentst(,) at theN boundary nodes over all the inclu- (22 means to solve a rigid-inclusion problem for the whole space
sions. Note that in the above system, the dimension for submatgt containing one inclusiofith one. The inversion in22) isa
A, is 3mx 6 and forB, is 6x 3m. Both are not square matricesSMall operation which can be carried out efficiently with any di-
(tﬁe number of nodeg per inclusion can be largg If all the rect sol_ver for a matrix equation. _Wlth this preconditioning, the
inclusions are of the same size and shape, and meshed in the sdl r-rlght and Iower-lgft Smeatr'Ces (20) reduce to Z€ro ma-
way, then both the submatricés, andB,, can be computed only trices, while the Iower-.rlght submatrix apd the blpck dlagonals in
once for all the inclusions. Fhe upper_-left sub_matrlx are conver_ted into |d_er_1t|ty matrices. This
The iterative solver GMRES is used to solve the system & eSsentially equivalent to converting the original integral equa-
equations in Eq(20), in which the multiplication of thecoeffi- 10N in (6) into another equation of the second kind whose solution
cient matrix and(approximate solutionvector in each iteration IS Unique. The system thus obtained is well conditioned and the
are obtained by using the fast multipole method. In the FMM, tHP!utions are stable, as shown in the following numerical ex-
maximum depth of the oct-tree structure is below 10 levels. Dire@fPles-
integrations for near field interactions are computed during each
iteration and are not stored to save the memory space. As for the
preconditioner, we use the followingdiagonal”) matrix: 5 Numerical Examples

r—u 0o .- 0 A, 0 - 07 The developed fast BEM for the analysis of rigid inclusions is
11 1 . . . . .. .

- first validated using a test case of a single rigid sphere for which

0 —U,, 0 0o A -+ 0 the analytical solution can be found readily. Then, the BEM code

is applied to study the fiber-reinforced composites using the rigid-
inclusion model.

0 0 -U,, O A
M= Unn " 5.1 A Rigid Sphere in an Infinite Elastic Medium. To
By 0 0 0 validate the developed new BIE formulation and its BEM imple-
0 mentation for the study of rigid-inclusion models of fiber-

reinforced composites, a rigid sphere in an infinite elastic medium
is considered firs{Fig. 2). The elastic medium containing the
0 0o - B, O 0 - 0 rigid sphere is loaded with a far-field triaxial strasS. The ana-
- (21) lytical solution for this axisymmetric problem can be obtained
readily using basic elasticity theofl0] or the equivalent inclu-
The system in(20) is right-preconditioned with this matrix. The sion method41]. The radial displacement, radial and tangential
inverse ofM is easily obtained as: stresses in the elastic domain are found to be:
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Fig. 3 A boundary element model of the sphere  (with 1944 surface elements )

(1-2v)0” ad stress contour plot forr, on the surfacgboundary of the me-
u.(r)= T( - —3) r, (23) dium) is given in Fig. 7 for the finest megshown in Fig. 3. The
boundary stress field is obtained by using the traction results and
2(1—2 3 averaged at each corner node using results on the surrounding
o (r)=0"| 1+ ( v) a” (24) elements. Note the increase of the stress value on the siviihe
1+v 3| a stress concentration factor of 1.61%4hd its location due to the
presence of the rigid sphere in the elastic medium.
" 1-2va® The excellent agreement of the BEM results with the analytical
oy(r)=0"|1- 1+v (3|’ (25)  solution for this example suggests that the developed new BIE

formulation and its BEM implementation are correct and effec-
respectively, where is the radius of the spherg&, the Young’s tive. Fiber-reinforced composite materials will be considered next
modulus, andv the Poisson’s ratio of the elastic medium. Not&ising this rigid-inclusion model and the BEM approach.
thatu,(a) =0, which is the result for a rigid sphere. ) . ) .

The convergence of the BEM is studied with several boundar365-2 ‘Short-Fiber-Reinforced ~ Composites. Modeling  of
element meshes for the sphere. The finest mesh (eiétl 1944 fiber-reinforced composites usmg_the_ rigid-inclusion model and
elements is shown in Fig. 3. The radial stress computed by thie developed BEM is considered in this and next examples. Short
BEM on the surface is compared with the analytical solufiq. fibers in a matrix are more likely to act like rigid rofis8] if their
(24)] and the relative errors are plotted in Fig. 4 for differenstiffness is more than an order of magnitude higher than that of
meshes with increasing numbers of elements. The error with tH® matrix. Several representative volume elements containing dif-
coarsest mestl20 elementsis 4.93%, while that with the finest ferent numbers of fibers are used to study the interactions of the
mesh (1944 elementsis 0.19%. The convergence of the BEMfibers and to estimate the effective properties of the composites.
results is achieved. The field displacement and stresses within ¥e limit our attention to short and moderately long fibers in a
elastic domain are plotted in Figs. 5 and 6, respectively, for thgatrix, where the aspect ratitength/diameterof an inclusion is
coarsest meski120 elementsto deliberately show the errors of kept below 20. The main purpose of these examples is to show the
the BEM. Even though the results on the surface for this coarsepabiliies and promises of the developed fast BEM in large-
mesh contain a relatively larger err@.93% for radial stress, Fig. scale modeling of fiber-reinforced composites. The models stud-
4), the results inside the domaiaway from the surfageare quite ied here are simple and ideal in nature, with more realistic ones
good. This is one of the advantages of the BEM approach, whibleing left for future applications.
uses integral representatipe.g., Eq.(5)] for this calculation that ~ The RVEs considered in this study are of finite sizes and
tends to reduce the errors inside the domain. Note that both theddedn an infinite domain with the same material as that of the
radial and tangential stresses tend to the applied far-field stresatrix (cf., similar inclusion models in 2D infinite space reported
o”, as the distance from the center of the sphere increases. Thia Refs.[9-14,16,17). In this way, the problem can be posed as
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Fig. 4 Convergence of the BEM results for surface radial stress o.(a)

an infinite domain problem and the structure of E20) can be ment and stress results at these data-collection surfaces by the
preserved,A RVE model as a finite domain problem can be easilfollowing formula (which ignores the stresses on the lateral sur-
implemented with some modifications of EQO) to consider di- faces that have been found much smaller in value compared with
rect loading on the surfaces of a RJHn the current embedded o, in the cases studig¢d

RVE models, a far-field uniaxial tensile stress is applied in the

x-direction (Fig. 8). To estimate the effective Young’s modulus of (o) avel

a composite in one directiofe.g., the fiber ox-direction, the EEﬁ:(AUx)<ave)’ (26)
displacements and stresses at some surfaces of the RVE, to be

called data-collection surfacéfig. 8), are computed using Eq. whereE is the estimated effective Young’s modulus of the com-
(5) and its gradients, after the tractianis determined for each posite in thex-direction (Fig. 8), and the displacement and stress
rigid inclusion by solving the BIE equations. The effectiveaveraged over the data-collection surfa¢Emy. 8) are obtained
Young's modulus of the composite is estimated using the displadax

2.50
—— Radial displaceneant - Analytical
2.00
o Radial displacemant - BEM
1.50 -

radial displacement
2

3

0.00

-0.50 T T - T
1.00 1.50 2,00 250 .00 3.50 4.00 4.50 5.00
radius r'a

Fig. 5 Radial displacement (X o”a/E) obtained by the BEM model with 120 elements
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Fig. 7 Contour plot for stress o, (X o*) on the surface of the rigid sphere
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in the x-, y-, and z-directions to such an extent that each fiber
remains in its own boxterritory) to avoid contact of the fibers.
This case is called thaligned randomcase. The third case is a
“random” distribution and “random” orientation of the fibers.
Again the random distribution ari@mall angle rotation of a fiber

is limited to the extent that it remains in its own box. This case is
named therandom (or to be more precise, eontrolled random)
case. In all the cases, the volume fraction of the fiber is 9.16%
based on the dimensions of the RVE and fibers. A Poisson’s ratio
of 0.3 is used for the matrix.

Figure 10 shows the contour plot of surface stress(in the
matrix) for the RVE containing 216 “random” short fibers. For
each fiber, high stresses occur around the two ends of the fiber,
which is consistent with the theory that in the limit as the slender
inclusion becomes a rigid line, singularity of stresses will arise at
the two tips[9]. Values of these stresses are even higher when two
fibers are closer to each other, suggesting closer interactions of the
fibers. This stress plot is typical among all the studied RVEs con-
A data-collection surface taininggx gXxq fibers, withq=2, 3, 4, 6, 8, 10, 12, and 13 in this
example. The largest RVE with 219an array of 1X13X13)
“random” fibers is shown in Fig. 11. The total degrees of freedom
for the model in Fig. 11 is 3018 678=2197X(6+456X3)).

The normalized Young’s moduliBg4/Epari) Of the compos-

(AU (ave = (Ux(X=L/2)) (ave — (Ux(X=—L12)) (a9, (27) ites, estimated with the three different fiber distributions and ori-

entations using the above mentioned RVEs, are plotted in Fig. 12.

(0 (ave = [(0x(X=L12)) (avg + (0x(Xx=~L12)) @ 1/2, (28) The increase of the effective Young’s modulus of the composite
with L being the length of the RVE in thedirection Fig. 8, the estimated by the RVEs with uniform distributions of aligned fibers
origin of the coordinate system is located at the center of thianges from 28.1% to 40.8%a difference of 45.2%as the num-
RVE). In this way, the effective modulus is obtained as the locdler of fibers(or size of the RVEgincreases from 8 to 2197. The
elastic constant of the volume with inclusions. One may argue thatlues of the modulus in this uniform case increase gradually and
the effective modulus ii26) is an apparent property because it isend to a constant value. These results suggest that a RVE with a
obtained using an infinite domain that acts as part of the “loadirgmaller number of short fibers is inefficient for obtaining the ef-
device.” Indeed, the effectiveness of this approach with a RVfective properties accurately with E(R6) even in the cases with
embedded in the infinite domain needs to be verified with othghiform distributions of aligned fiberéwithout considering the
results and improved RVE models can also be developed. Thgriodic boundary conditions The estimated increases of the
reader is referred to Sec. 6 for further discussions and an attergting’'s moduli in thealigned randomand randomcases range
to verify the proposed approach. . from 27.7% to 46.2% and oscillate within this range until ap-
A mesh with 456 boundary elements for a short, cylindrical,oaching another constant. Surprisingly, the estimated moduli in
fiber of an aspect ratio equal ta®ngth=50 and diameter10) iS¢ gligned random and random cases are higher for most RVES
shown in Fig. 9. This mesh is sufficient for obtaining convergeg, those in the corresponding uniform case. This may suggest
r(?sultg f(t)rﬂ:he esttlma;[edbeﬁec;l\ég moduli Q&%Eggr 'i Inlt'alhfhat the load transfer may be improved by the “random” distribu-
placed at the center of a box of dimensions (chosen tions of fibers in a short-fiber composite. However, in comparison,

arbitrarily) and filled with the matrix material. This box is then . . 0
repeated in thee, y-, and z-directions to generate the multiple_the values of the effective moduli are about 30% lower than those

fiber RVE models. Three different distributions and orientations &"Ed'deq by the theory and BEI(J_lor |ncompreSS|b_Ie materials
the fibers are considered. The first case is the uniform distributiB‘?Ported_'n Ref[ 18] for the same fiber volume f_ractlo_n and aspect
of aligned fibers, to be called thmiformcase. The second case id @ti0- This may be due to the fact that the fibers in the current
a “random” distribution of aligned fibers, where the fibers are stiinodels are confined within their own boxes and no “relays” occur

aligned in thex-direction, but their locations are shifted randomlyn the fiber direction, even in the “random” case, which leads to
“weakest-link” regions between two arrays of fibers. While in the

models used in Ref.18], aligned fibers are placed randomly in
the RVE and therefore better load transfer are achieved. Further
tests on the current BEM can be carried out with more realistic
distributions of the fibers.

Figure 13 shows the CPU time used to obtain results in this
short-fiber composite example, on a FUJITSU PRIMEPOWER
HPC2500 machinéa shared memory machine with 96 CPUs and
384GB memoryand using four CPUs. In this example, no serious
attempts have been made to parallelize the code except for the
automatic parallelization made by the compiler. Contrary to the
traditional BEM where the solution time is @f(N®) (with N here
being the total number of DOF,she CPU time required for solv-
ing a model using the fast multipole BEM is only @f(N) as
shown in Fig. 13(a straight line with the slope close to unity
Furthermore, the memory required for solving a problem also in-

¥ creases linearly with the size of the problem for fast multipole

BEM. Also, the number of iterations required to reach the conver-
Fig.9 ABEM mesh used for the short fiber inclusion  (with 456  gence with a tolerance of 18 in using the GMRES is between 5
elements ) (for N=10992) and 7(for N=3 018 678). Therefore, the fast

Fibar (rigid inclusian)

Fig. 8 A RVE of a short fiber-reinforced composite
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Fig. 10 Contour plot of surface stresses (X ™) for a model with 216 “randomly” distributed
and oriented short fibers

multipole BEM is much faster and more efficient as compared 5.3 Long-Fiber-Reinforced Composites. Composites rein-

with the traditional BEM(further discussions and examples caiorced with relatively long fibers, with an aspect ratio of 16

be found in Refs[21,39). (length=80 and diameter5), are studied using the developed
These preliminary results in modeling short-fiber-reinforceBEM. Each fiber is discretized using 600 boundary elements and

composites clearly demonstrate the effectiveness and robustr@ased in a box of the same dimensidid90x20x20) as in the

of the developed fast multipole BEM based on the rigid-inclusioshort-fiber example. This box is then repeated in xhey-, and

model. z-directions to generate RVEs containigg X q fibers, withq

Fig. 11 A RVE containing 2197 short fibers with the total DOF =3018678
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Fig. 12 Estimated effective Young’s moduli in the x-direction for the composite model with
up to 2197 short rigid fibers (fiber volume fraction =9.16%)

=2,3,4,6, 8, 10, 12, 13, 15, and 18 in this example. The largestFigure 15 shows the normalized effective Young’'s moduli
model with 5832 fibers and 10532592 DOFs832x(6+600 (Eci/Enani cOmputed for the composites with the relatively long
X3)) is shown in Fig. 14. The fibers are arranged in the so calléibers using the RVEs in the uniform and “random” cases. The
“random” manner as in the short-fiber RVEs. Again, these arecreases of the computed effective moduli are about two times
“controlled random” distributiongeach fiber within its own box higher in these long-fiber cases than those in the short-fiber cases,
and orientationgwith small rotation anglesof the fibers so that even though the fiber volume fraction is lower. This is expected
no contact among them occur in the RVEs. The volume fraction since aligned long fibers are better for load transfer in a compos-
the fiber is 3.85% for all the long-fiber models in this exampldte. The increases in the values of the modulus range from 75.9%

The Poisson’s ratio for the matrix is 0.3. to 95.0% for the uniform case and from 65.4% to 87.6% for the
100,000
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-g- 1,000
=
i
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—& —CPL! fima (*Random” casa)
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Fig. 13 CPU time used for solving the BEM models for the short-fiber cases
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Fig. 14 A RVE containing 5832 long fibers with the total DOF =10 532592

random case. Results for the uniform case increase gradually withe) on the PRIMEPOWER HPC2500 computer using 32 CPUs,
the increase of the RVE sizes and tend to a constant vaMgh a tolerance of 10° in the solution with GMRES and ten-
(95.0%. The values obtained for the “random” case fluctuate foferm expansion in the FMM. The code used for this example was
RVES. Howeve, the increases m ihe randont” case are L“&&?’?ggffa"e'!zed with minimum efforts using OpenMP and automatic
lower than those in the uniform case in this long-fiber examplé. rallgllzatlon option O.f the (l:omp|ller. .

This suggests that even small misalignment and rotations of IongRa_pld convergence Is ach|eve_q in this case alsg. The number of
fibers (which are uniformly and closely packed in the fiber direcli€rations in solving the preconditioned system using the GMRES
tion initially) will offset the enhancement in the stiffness for longiterative solver is between $or N=14448) and 1i(for N

fiber composites. The largest RVE modelith 5832 fibers and =10532592) with a tolerance of 18. This shows that the pre-
10532592 DOFscan be solvedn 3 h and 40 minwall-clock conditioner in(22) works very well even in problems when the
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Fig. 15 Estimated effective Young’s moduli in the x-direction for the composite model with
up to 5832 long rigid fibers (fiber volume fraction =3.85%)
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aspect ratio of the inclusions is as large as 16. The robustnes<s#fe, e.g., Refd42—45). The Young’'s moduli of carbon nano-
the developed BEM for modeling fiber-reinforced composites isibes are in general greater than 1 TPa along the tube direction,
demonstrated again by this example which has reached 10 milliabout two orders higher than those of many matrix materials
DOFs for the boundary element method. [43,44]. To model the CNT-based composites, continuum mechan-
ics approaches using the FEM or BEMI6—49 may still be ap-
: : plied if the overall behaviors and properties of the CNT-based
6 Discussions composites are to be investigated. However, CNTs are usually
The developed fast multipole BEM for the analysis of fiberproduced in different shapes and sites example, being curved,
reinforced composites based on the rigid-inclusion model hagisted, or bundleg and are difficult to align in a composite.
been demonstrated to be very effective and efficient for large scalgus the computational models for such composites may need to
models. Interactions of the fibers, load transfer mechanisms agshtain a much larger number of fibers in a RVE, as compared to
effective properties of a composite can be investigated readilyose for traditional composites for which the fibers can be
using the BEM code with different parameters, such as fiber agigned easily and distributed uniformly, mainly because of their
pect ratios, volume fractions, waviness, distributions, and orientarger scales. The BEM can model multimaterial problems easily
tions. However, further studies are needed regarding the effectigince it uses elements only on boundaries and interfaces of the
ness of the model and method for evaluating the effectiy@oblem domain. With the fast multipole BEM, the solution time
properties of the composite materials, since the rigid-inclusidias also been reduced dramatically for large-scale problems. The
model has some obvious limitations. For example, the effect agid-inclusion model further simplifies the BEM approach and
the ratio of the Young's modulus of the fiber to that of the matriincreases its efficiency in the analysis of some special composite
for a composite can not be accounted for in the rigid-inclusiomaterials, as demonstrated by the examples in the previous sec-
model (this ratio is equal to infinity in the rigid model for any tion. All these features and new development make the BEM very
matrix material. Although there are a large amount of experimenappealing in large scale analysis of CNT-based composites for
tal data and numerous analytical results based on different theoigsmating their overall mechanical properties. Studies are under-
for estimating the effective properties of fiber-reinforced composray along this line in modeling CNT-based composites by using
ites, direct comparison of the BEM results with these data was nbt developed fast multipole BEM with new interface conditions
attempted in this studfexcept with that in Refl18]), because of based on molecular dynamics simulations of CNT-fiber pullout
the wide variations in those data. More realistic models of thests.
fiber-reinforced composites using the rigid or elastic inclusion ap- The work reported in this paper, on using the rigid-inclusion
proaches need to be studied using the developed BEM in futyr@dels for analyzing fiber-reinforced composites, is only the first
applications. step in the development of a more general FMM BEM for study-
The boundary integral equation developed for this study, Eiihg such materials and many others. The developed BIE formula-
(6), is essentially an integral equation of the first kind, which, usetbn and the FMM BEM can be extended readily for other prob-
in its original form, may raise the question of stability and conlems. A FMM BEM solver for general inclusion problems can be
vergence of its solutions when using iterative solvers as in tiieveloped, where the inclusions can be elastic or rigid, or simply
FMM. Our experience has shown that even for integral equatioasvoid. Other RVE models, for example, with periodic boundary
of the first kind, the FMM BEM, which uses iterative solvers suclonditions, can be implemented as stated above. Interfacing the
as GMRES, can still deliver fast converging and stable resulieveloped BEM with other methodsuch as molecular dynamics
with good preconditioners. Our selection of using the right préer multiscale analyses of CNT-based composites can also be con-
conditioner in Eq.(22) turns out to be very effective. sidered and may present unique advantages over other domain-
The RVE used in this study is of finite size as shown in Fig. &ased methods. Higher-order boundary elements can be applied to
that is embedded in an infinite space filled with the matrix matéarther increase the efficiency and accuracy of the BEM. A prac-
rial and loaded remotelyct., again, 2D models in infinite spacetical and important development for the BEM code is to develop
used in Refs[9-14,16,1T). This is chosen so that an infinite an improved preprocessor that can generate the boundary element
domain problem can be solved, which is easier to handle concemesh for a RVE containing a large number of truly randomly
ing the boundary conditions and, in general, converges faster thdgistributed and oriented fibers, including curved ones, so that
an interior problem using the FMM. In this infinite domain probmore realistic models of composites can be analyzed based on real
lem, the displacement and stress fields on the surfaces of the R¥perimental or fabrication parameters. Finally, full parallelization
(data-collection surfacgsieed to be calculated after the boundaryf the BEM code can be implemented to further increase the ro-
solutions on all the inclusions are obtained with the fast multipolsustness of the developed fast multipole BEM for even larger
BEM. This calculation of the fields inside the domain takes extimodels based, eventually, directly on scanned 3D models of com-
CPU time, which can be substantial for large models, althoughpbsite material samples.
can be computed by using the FMM al20]. An interior prob-
lem defined on the finite sized RVE directly can certainly b(? Conclusion
implemented with some modifications of EQ0) and may pro-
vide some improvements to the current RVE model. For example, A new boundary integral equation formulation for the analysis
the boundary solution&lisplacements and tractionsn the RVE of an elastic medium containing rigid inclusions is derived in this
surfaces, which are available after the solution of an interior propaper. This new BIE contains only the weakly-singular displace-
lem, can be used directly to evaluate the effective properties.ment kernel from the fundamental solution and thus is much more
more reliable, and perhaps more elegant, approach for computgféicient to solve than the traditional singular BIE. The fast mul-
the effective modulus is to use FMM for periodic boundary cortipole boundary element method is employed to solve this new
ditions [25]. Our preliminary analysis with the two dimensionalBIE. The developed BIE formulation and FMM BEM code are
Laplace problem§l7] shows that the periodic FMM BEM can befound to be very stable and the results converge in about 10 itera-
implemented easily, and the increase of the CPU time over ttiens for a tolerance of I® with the preconditioned GMRES.
ordinary FMM is less than 20%. The effective property obtaine@ihe numerical results for a spherical rigid inclusion in an elastic
with an equivalent formula af26) and with the periodic FMM did domain match very closely with the analytical solution. Short- and
not differ very much. The elastic counterpart of the periodic FMNoderately long-fiber-reinforced composites are investigated us-
is now underway. ing the developed BEM and their effective Young’s moduli are
The rigid-inclusion model for fiber-reinforced composites magstimated using the BEM displacement and stress results for the
have the potential in some very urgent applications, such as medpresentative volume elements. The largest model studied con-
eling of the emerging carbon nanotu@NT)-based composites tains more than 5800 fibers and has the total degrees of freedom
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over 10 millions. These preliminary results clearly demonstrat&2] Greengard, L., and Helsing, J., 1998, “On the Numerical Evaluation of Elas-
the effectiveness efficiency and promises of the developed fast tostatic Fields in Locally Isotropic Two-Dimensional Composites,” J. Mech.
multipole BEM for studying fiber-reinforced composites, when.,, TS SOldsA6, pp. 1441-1462.
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