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A Fast Boundary Element Method
for the Analysis of Fiber-
Reinforced Composites Based on
a Rigid-Inclusion Model
A new boundary element method (BEM) is developed for three-dimensional analy
fiber-reinforced composites based on a rigid-inclusion model. Elasticity equations
solved in an elastic domain containing inclusions which can be assumed much stiffe
the host elastic medium. Therefore the inclusions can be treated as rigid ones with on
rigid-body displacements. It is shown that the boundary integral equation (BIE) in
case can be simplified and only the integral with the weakly-singular displacement k
is present. The BEM accelerated with the fast multipole method is used to solv
established BIE. The developed BEM code is validated with the analytical solution
rigid sphere in an infinite elastic domain and excellent agreement is achieved. Nume
examples of fiber-reinforced composites, with the number of fibers considered rea
above 5800 and total degrees of freedom above 10 millions, are solved successfully
developed BEM. Effective Young’s moduli of fiber-reinforced composites are evaluat
uniformly and ‘‘randomly’’ distributed fibers with two different aspect ratios and volu
fractions. The developed fast multipole BEM is demonstrated to be very promisin
large-scale analysis of fiber-reinforced composites, when the fibers can be assume
relative to the matrix materials.@DOI: 10.1115/1.1825436#
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1 Introduction
Modeling can play an important role in the analysis and des

of fiber-reinforced composite materials. Mechanical proper
and possible failure modes of these composites can be pred
early during the design stage using modeling techniques. H
ever, modeling fiber-reinforced materials presents many c
lenges to numerical methods. Fibers in a composite can have
ferent properties, shapes and sizes. They can be straight or cu
short or long, aligned or oriented arbitrarily, and distributed u
formly or randomly. All these factors make estimates of the m
chanical properties of fiber-reinforced composites very diffic
using the numerical methods. Often a representative volume
ment~RVE! containing only a few fibers may not be sufficient f
accurately determining the effective properties of a compos
Large-scale models with hundreds or thousands of fibers ma
deemed necessary in many situations. Unfortunately, modelin
bers, matrix, and possibly interphases between them as sep
material domains in large-scale models is beyond the limit
current computing power. This has been the main reason that
of the current models of the fiber-reinforced composites based
the boundary integral equation and boundary element me
~BIE/BEM! are two-dimensional ones with one or a few fibe
considered in the RVEs~see, e.g., Refs.@1–8#!. These models are
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ing, University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and
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adequate for the study of local properties, such as interfa
stresses and fractures, of a composite, but are often not suffi
for evaluating the overall mechanical properties of the compos
Therefore, models that can capture the overall behaviors of a c
posite without overwhelming computing resources are needed
will be beneficial in large-scale simulations. Using the rigi
inclusion model seems to be a feasible first step in large-s
simulations for investigating the interactions of fibers, load tra
fer mechanism and effective properties of a composite. The rig
inclusion approximation is valid when the fibers have mu
higher values of stiffness compared with that of the matrix. T
approximation can significantly reduce the modeling complex
for the analysis, as will be demonstrated in this paper.

There are two approaches regarding whether or not to fur
simplify the geometries for modeling rigid inclusions. One a
proach treats the rigid inclusions as they are without further s
plifying their geometries, which consequently requires 3D mod
for rigid inclusions. The other approach treats slender rigid inc
sions, as in the case of long-fiber-reinforced composites, as ri
line inclusions, where the geometry of an inclusion is reduced
line. This rigid-line inclusion model is valid when the aspect ra
of an inclusion is large. It is also efficient in modeling of rigid-lin
inclusions because of the simplified geometry. Only 2D models
rigid-line inclusions in a medium have been studied so far.

In the analysis of rigid-line inclusions, also called anticracks
a 2D elastic domain@9#, many research results have been repor
in the literature. Boundary integral equation and boundary e
ment method have been found especially suitable for the ana
of rigid-line inclusions, since cracks in 2D, the counter part
rigid lines, have been studied intensively by using the BIEs. Ma
of the results for crack analysis can be extended readily to
analysis of rigid-line inclusions. In the early 1990s, the group
Hu, Chandra and Huang made considerable contributions to
study of rigid-line inclusions in a matrix using the boundary int

trial
H
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gral equation method for 2D cases. Some of their analytical
numerical results can be found in Refs.@10–14#. In these works,
the rigid lines embedded in an infinite space are represente
distributions of tractions along the rigid lines~as compared to
distributions of dislocations for cracks! and integral equations ar
established using the Green’s functions. The interactions of r
lines with cracks and the effects of rigid lines on the effect
elastic material properties of composites were successfully stu
using this approach for 2D models@10–14#. Extensive review of
the earlier theoretical work on the elasticity study of rigid-lin
inclusions in a solid can also be found in Refs.@10–14#. Recently,
there seems to be a renewed interest in the study of rigid-
inclusions using the BIEs. In Ref.@15#, Leite, Coda, and Venturin
reported a 2D BEM coupled with the finite elements that are u
to model the bar inclusions in a matrix. These bar inclusio
representing fibers in a matrix, are assumed to be rigid within
cross section of a bar, but can deform along the axial directio
their models. The displacement and stress fields near the lin
clusions are studied by this approach. In a recent work@16#, Dong,
Lo, and Cheung developed a hypersingular BIE approach for
analysis of interactions of rigid-line inclusions with cracks in a 2
elastic medium. Stress intensity factors at the tips of rigid lines
computed with this hypersingular BIE approach and compa
with analytical solutions. In all the results mentioned above, o
2D models with a small number~less than 10! of rigid-line inclu-
sions have been considered. Most recently, Nishimura and
@17# used the fast multipole BEM to solve rigid-line inclusio
models in the context of 2D thermal analysis. The rigid-line co
cept in the thermal case means line inclusions with much hig
thermal conductivities than that of the matrix material. A hyp
singular BIE was employed and up to 10 000 line inclusions w
studied. The effective thermal conductivity of a 2D medium~thin
films! containing rigid lines were successfully evaluated using
2D RVEs embedded in an infinite plane in Ref.@17#.

In the case of modeling rigid inclusions as 2D or 3D obje
without simplifying their geometries, Ingber and Papathanasio
work @18# seems to be the only reported one using the bound
element method. The full conventional BIE for Navier’s equati
governing anincompressiblemedium containing rigid fibers is
solved in@18# in order to determine the effective moduli of com
posites with different fiber volume fractions and aspect rati
Constant boundary elements were employed to discretize the
which contains the singular as well as weakly-singular kern
Parallel computing was used to solve the BEM equations. Up
200 short, aligned rigid fibers, with the total degrees of freed
~DOFs! of about 12 000, were successfully solved by the dev
oped BEM approach. Very good agreement of the evaluated e
tive moduli using their BEM approach and analytical results
reported in@18#, which clearly demonstrates that the rigid-fib
model is very promising and the BEM is very efficient for an
lyzing fiber-reinforced composites. In the field of fluid mechani
there are many research results concerning the flows of fl
around rigid solids. Two recent references using the bound
element method for modeling rigid bodies in fluids can be fou
in Refs. @19#, @20#. In particular, in Ref.@19#, an indirect BIE of
the first kind using the single-layer potential is developed for so
ing Stokes equations and this approach is found to be very st
and more amenable to fast iterative solvers.

The boundary element method based on the BIEs is a na
way to model inclusion problems, due to its reduction of the
mension of the problem domain and high accuracy. With the
velopment of the fast multipole methods~FMM! ~see a recent
review in Ref.@21#! for solving boundary integral equations, larg
models with several million degrees of freedom can be sol
readily on a desktop computer. Rokhlin, Greengard, and
workers, who pioneered the FMM, have done extensive rese
on the FMM for inclusion problems in the context of potent
fields as well as elastic fields in two-dimensional domains~see,
Ref. @22# and related papers in Refs.@23–25#!. Rodin and co-
116 Õ Vol. 72, JANUARY 2005
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workers @26# have formulated the BIE for 3D elastic inclusio
problems using the FMM. Solutions for up to 343 spherical vo
in an elastic domain were computed using their parallel FM
BEM code ~with total DOFs about 400 000! @26#. Some other
development of the fast multipole BEM can be found in Re
@27#, @28# for general elasticity problems, and in@29–31# for crack
problems. With the advances of new composites, new mode
approaches that can handle even larger numbers of fibers i
RVE need to be developed. The rigid-inclusion approach seem
be a feasible first approximation with the current computing
pabilities. All these demands in materials research and progre
in the BEM suggest that the rigid-inclusion models and the f
multipole BEM may play a significant role in the analysis of fibe
reinforced composites.

In this paper, a new BIE formulation is presented for the ana
sis of rigid inclusions in a general 3D isotropic elastic mediu
based on the general direct BIE formulation. The BIE conta
only the displacement kernel and the influence of the tract
kernel is implied in the coefficient of the free displacement ter
Although this integral equation is essentially~not exactly! a Fred-
holm integral equation of the first kind, it is suitable for numeric
solutions with iterative solvers because a good preconditione
available. The BEM accelerated by the fast multipole method
used to solve the established BIE and the preconditioned sys
of equations is found to be well conditioned. The analytical so
tion of a rigid sphere in an infinite elastic domain is used
validate the developed BEM code and excellent agreemen
achieved. Examples for modeling fiber-reinforced composi
with the number of fibers reaching above 5800 and total DO
above 10 millions, are successfully solved by the developed
multipole BEM. Effective Young’s moduli of fiber-reinforced
composites are evaluated for uniformly and ‘‘randomly’’ distri
uted and oriented fibers with two different aspect ratios and v
ume fractions. The developed fast multipole BEM is demonstra
to be very promising for large-scale analysis of fiber-reinforc
composites, when the fibers can be assumed rigid relative
the matrix. It can also be applied to modeling other inclusi
problems.

2 BIE Formulation for an Elastic Medium Containing
Rigid Inclusions

The boundary integral equation for the analysis of an ela
domain containing rigid inclusions is derived in this section. Th
new and simplified BIE formulation contains only one integr
with the displacement kernel and thus can facilitate more effic
computation. Consider a 3D infinite elastic domainV embedded
with n rigid inclusions~Fig. 1!. The matrix is loaded with a re-
mote stress or displacement field. The displacement at a p
inside the domain is given by the following direct representat
integral ~see, e.g.,@32#!:

Fig. 1 A 3D infinite elastic medium „R3
… embedded with rigid

inclusions
Transactions of the ASME
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S
@U~x,y!t~y!2T~x,y!u~y!#dS~y!1u`~x!, ;xPV,

(1)

whereu and t are the displacement and traction vectors, resp
tively; S5øaSa with Sa being the boundary of theath rigid
inclusion~Fig. 1!; andu` the undisturbed displacement field whe
a remote stress or displacement field is applied and the rigid
clusions are not present~This term is similar to that for an inciden
wave in the elastodynamic case@33#!. For a finite domain model
this term will not be present in Eq.~1!. The two kernel functions
U~x,y! and T~x,y! in Eq. ~1! are the displacement and tractio
components in the fundamental solution~Kelvin’s solution!, re-
spectively, which can be found in any BEM references~see, e.g.,
@34–37#!.

Before we let the source pointx approach the boundaryS to
derive the boundary integral equation, we first consider the rig
body motions of each inclusion. For a rigid inclusion enclosed
Sa , the displacement at any pointy can be described by the rigid
body motions as:

u~y!5d1vÃp~y!, (2)

whered is the rigid-body translational displacement vector,v the
rotation vector, andp a position vector for pointy measured from
a reference point~such as the center of the inclusion!. Consider a
complementproblem in the interior region enclosed bySa and
filled with the same material as that of domainV. Then the fol-
lowing representation integral holds:

05E
Sa

@Ũ~x,y! t̃~y!2T̃~x,y!ũ~y!#dS~y!, ;xPV, (3)

where ũ and t̃ are the displacement and traction vectors, resp
tively, for this complement problem;Ũ5U and T̃52T as in Eq.
~1! ~the normal for the region enclosed bySa is in the opposite
direction ofn shown in Fig. 1!. Any rigid-body motion is a solu-
tion to the elasticity equations for the complement problem. Th
the following solution:

ũ~y!5u~y!5d1vÃp~y!, t̃~y!50

satisfies the representation integral~3!. Substituting these result
into ~3!, we obtain:

E
Sa

T~x,y!@d1vÃp~y!#dS~y!50, ;xPV,

or

E
Sa

T~x,y!u~y!dS~y!50, ;xPV, (4)

for the region enclosed bySa (a51,2, . . . ,n). This is exactly the
second integral with theT kernel in Eq.~1! on one inclusion.
Therefore, the integral in Eq.~1! involving theT kernel vanishes
and Eq.~1! reduces to:

u~x!5E
S
U~x,y!t~y!dS~y!1u`~x!, ;xPV, (5)

for all rigid inclusions (S5øaSa). This representation integra
can be applied to evaluate the displacement field at any p
inside the domainV, once the tractions on the surfaces of the rig
inclusions are obtained. The stress field at any point in the dom
can also be evaluated by taking derivatives of expression~5! and
applying the Hook’s law.

To obtain the traction values on surfaces of the rigid inclusio
we let the source pointx approach the boundaryS to arrive at the
following boundary integral equation:

u~x!5E
S
U~x,y!t~y!dS~y!1u`~x!, ;xPS5ø

a
Sa , (6)
Journal of Applied Mechanics
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in which no jump term arises since theU kernel is only weakly
singular @34–37#. This BIE for rigid-inclusion problems is ex-
tremely compact and simple, in which only the weakly-singu
kernel needs to be handled. Analytical solutions for rig
inclusion problems may be obtained for simple geometries
using this BIE formulation.

Although the BIE~6! for rigid inclusions are much simpler to
handle than the BIE for elastic inclusions, it requires additio
considerations, that is, the rigid-body motions of each inclusi
expressed by Eq.~2! that contains six unknowns~d andv vectors!
for each inclusion. Additional equations are needed to supplem
BIE ~6!. These equations can be obtained by considering
equilibrium of each inclusion, that is, the following~six scalar!
equations:

E
Sa

t~y!dS~y!50; (7)

E
Sa

p~y!3t~y!dS~y!50; (8)

for a51,2, . . . ,n. Expression~7! represents the equilibrium o
the forces, while expression~8! that of the moments, for the rigid
inclusions. BIE~6! and Eqs.~2!, ~7!, and ~8! are simultaneously
solved to obtain the unknown rigid-body motionsd and v, and
traction t for all the inclusions.

It should be pointed out that BIE in~6! is essentially a Fred-
holm integral equation of the first kind, although not exactly sin
it contains additional finite number of unknownsd andv for each
inclusion. Integral equations of the first kind are usually cons
ered not suitable for numerical solutions with iterative solve
This problem can be resolved in two ways. Namely, we eit
convert the BIE into an equivalent equation of the second kind
use a preconditioner after the discretization. One may poss
replace BIE~6! by a second kind integral equation of the follow
ing form as one uses instead the traction equation correspon
to ~6!:

1
2t~x!5E

S
TU~x,y!t~y!dS~y!1Tu`~x!, ;xPS5ø

a
Sa ,

whereT is the traction operator which is applied tox. Unfortu-
nately, the solution to this equation is not unique. We theref
decided to use BIE~6! for the analysis since we can find a goo
preconditioner for the system obtained after discretization of~6!,
as we shall see later.

In 2D, BIE ~6! will degenerate in the limit as the aspect ratio
an inclusion tends to infinity, that is, equations generated by us
BIE ~6! on the two opposing boundaries of a slender inclus
will be identical and thus not enough equations will be availa
for solving the BIE for separate tractions. In this case, the sum
tractions across the inclusion can be used as a new variable in
~6! to derive a new equation. Different Green’s function formu
tions can also be employed to consider rigid lines based on
work in Refs.@9–15#, which may turn out to be equivalent with
the equation based on BIE~6!. Like the crack cases, hypersingula
BIE formulations can also be applied, as has been done recen
@16# for 2D elasticity, and in@17# for 2D thermal analysis of line
inclusions. New BIE formulations for rigid-line inclusion prob
lems in 3D, however, still remain to be developed.

3 The Fast Multipole Method
The fast multipole method@21–31# is employed to accelerate

the BEM solution of the BIE for rigid inclusions. In recent year
the fast multipole method has been demonstrated to be espec
good for solving problems with large numbers of cracks and
clusions in both 2D and 3D cases. Using the fast multip
method for the BEM, the solution time of a problem is reduced
orderO(N), instead ofO(N2) as in the traditional BEM~with N
here being the number of equations!. The memory requirement is
JANUARY 2005, Vol. 72 Õ 117
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also reduced since the iterative solver~such as GMRES! does not
require the storage of the entire matrix in the memory. Thus, la
models that had to be solved on a supercomputer in the pas
now be solved on a desktop computer.

In the following, we briefly list the main results of the fa
multipole method for the developed BIE~6! to show the essenc
of this powerful approach to solving BIEs. Complete formulatio
and steps in implementations of the FMM for elastostatic pr
lems can be found in Refs.@38,39#. Other formulations using dif-
ferent FMM approaches for general elasticity problems can
found in Refs.@26–28#.

We start with the following form of the fundamental solutio
~index notation is employed here, where repeated indices im
summations!:

Ui j ~x,y!5
1

8pm S d i j

2

r
2

l1m

l12m

]

]xi

xj2yj

r D , (9)

wherel andm are the Lame´ constants,d i j the Kronecker symbol,
and r 5r (x,y) the distance between the source pointx and field
point y. The following identity holds:

1

r ~x,y!
5(

n50

`

(
m52n

n

Sn,m~OxW !Rn,m~OyW !, (10)

for uOyW u,uOxW u, in which O represents a third point,Rn,m and
Sn,m are solid harmonic functions defined in Refs.@38,39#, and
( ) means the complex conjugate. Substituting~10! into ~9!, we
arrive at:

Ui j ~x,y!5
1

8pm (
n50

`

(
m52n

n

@Fi j ,n,m~OxW !Rn,m~OyW !

1Gi ,n,m~OxW !~OyW ! jRn,m~OyW !#, (11)

where,

Fi j ,n,m~OxW !5
l13m

l12m
d i j Sn,m~OxW !2

l1m

l12m
~OxW ! j

]

]xi
Sn,m~OxW !,

Gi ,n,m~OxW !5
l1m

l12m

]

]xi
Sn,m~OxW !.

The significance of expression~11! is that the kernelUi j (x,y) is
now a sum of functions in the form ofkn

(1)(x2O)kn
(2)(y2O),

which will facilitate integrations independent of the source poinx
and thus reduce the number of integrals to compute. To see
consider the integral in BIE~6! on a subdomainSo of Saway from
the source pointx. Applying expression~11!, with point O being
close to subdomainSo , we obtain:

E
So

Ui j ~x,y!t j~y!dS~y!5
1

8pm (
n50

`

(
m52n

n

@Fi j ,n,m~OxW !M j ,n,m~O!

1Gi ,n,m~OxW !Mn,m~O!#, (12)

in which,

M j ,n,m~O!5E
So

Rn,m~OyW !t j~y!dS~y!, (13)

Mn,m~O!5E
So

~OyW ! jRn,m~OyW !t j~y!dS~y!, (14)

are called themultipole momentsfor given n and m. Note that
these four moments are independent of the location of the so
point x and thus only need to be calculated once for all locatio
of the source point away fromSo (So will be a cell in FMM and
O will be the center of this cell!. To evaluate the integral using Eq
~12!, only a small number of terms are required in the expans
For example, using ten terms forn in these expansions has bee
118 Õ Vol. 72, JANUARY 2005
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found sufficient for most problems. Further details of the FMM
the context of general 3D elastostatic problems and used in
work can be found in Refs.@38,39#.

The fast multipole BEM code developed for the current ana
sis of rigid inclusions in 3D elastic media is based on the FM
BEM code that was developed at the Kyoto University for gene
elasticity problems@38#. This earlier FMM code has been teste
on some large-scale stress analysis problems of regular struct
More details on the FMM for the BEM and its implementations
solving other types of problems can be found in Refs.@21#, @39#.

4 Discretization of the BIE
The boundary element method, accelerated by the fast m

pole method, is applied to solve BIE~6! together with Eqs.~2!,
~7!, and~8!. In this paper, constant triangular boundary eleme
are used to discretize these equations over the surfaces o
inclusions. One node is placed on each surface element and
field variable~traction! is assumed to be constant over each e
ment which is a flat triangular area defined by its three cor
points. Although constant elements may not be as accurat
linear or quadratic surface elements, they have certain advant
over other higher-order elements. For example, all the integ
involved in using the constant elements can be evaluated ana
cally in both 2D and 3D cases.~As a matter of fact, it is not
impossible to carry out analytical integrations for any planar e
ments with arbitrary polynomial basis functions. But the resu
will be quite complicated.! This avoids the use of any numerica
integration in the BEM and hence guarantees the accuracy in
evaluation of all integrals when the source pointx is very close to
an element of integration~which happens when many inclusion
are closely packed in a model!.

If the nodes are grouped together for each inclusion, numbe
on one inclusion after another, then a discretized form of the B
~6! can be written as:

H ũ1

ũ2

]

ũn

J 5F Ũ11 Ũ12 ¯ Ũ1n

Ũ21 Ũ22 ¯ Ũ2n

] ] � ]

Ũn1 Ũn2 ¯ Ũnn

G H t̃1

t̃2

]

t̃n

J 1H ũ1
`

ũ2
`

]

ũn
`
J , (15)

wheren is the total number of inclusions being considered;ũa and
t̃a the nodal displacement and traction vector for inclusiona,
respectively;ũa

` the given remote displacement vector evalua
on inclusiona; andŨab the coefficient matrix obtained from th
~analytical! integration of the displacement kernel over inclusi
b when the source pointx is located on inclusiona. From Eq.~2!,
the nodal displacement vector on an inclusiona can be related to
the rigid-body translationd and rotationv of that inclusion by the
following expression:

ũa5H u1

u2

]

um

J 5F a1

a2

]

am

Gwa5Aawa , (16)

in which ui is the nodal displacement vector at nodei ~with m
being the number of nodes on inclusiona!; ai the transformation
matrix for each nodei on inclusiona given by @see Eq.~2!#:

ai5F 1 0 0 0 p3 2p2

0 1 0 2p3 0 p1

0 0 1 p2 2p1 0
G , (17)

with pk being the component of the position vectorp for nodei;
and finally in ~16!, wa is the rigid-body displacement vector fo
inclusiona, defined by:

wa5@d1 d2 d3 v1 v2 v3#T, (18)
Transactions of the ASME
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for a51,2, . . . ,n. The system of equations~15! is supplemented
with the following ones from discretizations of Eqs.~7! and~8! on
each inclusiona:

Ba t̃a50, (19)

for a51,2, . . . ,n, in which Ba is a 633m coefficient matrix
obtained by evaluating Eqs.~7! and ~8! on inclusiona.

With results in~16!–~18!, the discretized BIE~15! and Eq.~19!
can now be combined to provide the following form of the syst
of equations:

3
2Ũ11 2Ũ12 ¯ 2Ũ1n A1 0 ¯ 0

2Ũ21 2Ũ22 ¯ 2Ũ2n 0 A2 ¯ 0

] ] � ] ] ] � ]

2Ũn1 2Ũn2 ¯ 2Ũnn 0 0 ¯ An

B1 0 ¯ 0 0 0 ¯ 0

0 B2 ¯ 0 0 0 ¯ 0

] ] � ] ] ] � ]

0 0 ¯ Bn 0 0 ¯ 0

4 5
t̃1

t̃2

]

t̃n

w1

w2

]

wn

6
55

ũ1
`

ũ2
`

]

ũn
`

0
0
]

0

6 . (20)

There are 3N16n equations in the above system~with N5m
3n, being the total number of nodes on all inclusions!, which are
sufficient for solving the 6n unknown rigid-body displacement
and rotations (wa) of then inclusions, and the 3N unknown trac-
tion components (t̃a) at theN boundary nodes over all the inclu
sions. Note that in the above system, the dimension for subm
Aa is 3m36 and forBa is 633m. Both are not square matrice
~the number of nodes per inclusionm can be large!. If all the
inclusions are of the same size and shape, and meshed in the
way, then both the submatricesAa andBa can be computed only
once for all the inclusions.

The iterative solver GMRES is used to solve the system
equations in Eq.~20!, in which the multiplication of the~coeffi-
cient! matrix and~approximate solution! vector in each iteration
are obtained by using the fast multipole method. In the FMM,
maximum depth of the oct-tree structure is below 10 levels. Dir
integrations for near field interactions are computed during e
iteration and are not stored to save the memory space. As fo
preconditioner, we use the following~‘‘diagonal’’ ! matrix:

M53
2Ũ11 0 ¯ 0 A1 0 ¯ 0

0 2Ũ22 ¯ 0 0 A2 ¯ 0

] ] � ] ] ] � ]

0 0 ¯ 2Ũnn 0 0 ¯ An

B1 0 ¯ 0 0 0 ¯ 0

0 B2 ¯ 0 0 0 ¯ 0

] ] � ] ] ] � ]

0 0 ¯ Bn 0 0 ¯ 0

4 .

(21)

The system in~20! is right-preconditioned with this matrix. The
inverse ofM is easily obtained as:
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M2153
P1 0 ¯ 0 Q1 0 ¯ 0

0 P2 ¯ 0 0 Q2 ¯ 0

] ] � ] ] ] � ]

0 0 ¯ Pn 0 0 ¯ Qn

R1 0 ¯ 0 S1 0 ¯ 0

0 R2 ¯ 0 0 S2 ¯ 0

] ] � ] ] ] � ]

0 0 ¯ Rn 0 0 ¯ Sn

4 ,

where

F Pi Qi

Ri Si
G5F2Ũi i A i

Bi 0
G21

, for inclusion i 51,2, . . . ,n.

(22)

Physically speaking, inverting the matrix on the right-hand side
~22! means to solve a rigid-inclusion problem for the whole spa
just containing one inclusion~ith one!. The inversion in~22! is a
small operation which can be carried out efficiently with any
rect solver for a matrix equation. With this preconditioning, t
upper-right and lower-left submatrices in~20! reduce to zero ma-
trices, while the lower-right submatrix and the block diagonals
the upper-left submatrix are converted into identity matrices. T
is essentially equivalent to converting the original integral eq
tion in ~6! into another equation of the second kind whose solut
is unique. The system thus obtained is well conditioned and
solutions are stable, as shown in the following numerical
amples.

5 Numerical Examples
The developed fast BEM for the analysis of rigid inclusions

first validated using a test case of a single rigid sphere for wh
the analytical solution can be found readily. Then, the BEM co
is applied to study the fiber-reinforced composites using the rig
inclusion model.

5.1 A Rigid Sphere in an Infinite Elastic Medium. To
validate the developed new BIE formulation and its BEM imp
mentation for the study of rigid-inclusion models of fibe
reinforced composites, a rigid sphere in an infinite elastic med
is considered first~Fig. 2!. The elastic medium containing th
rigid sphere is loaded with a far-field triaxial stresss`. The ana-
lytical solution for this axisymmetric problem can be obtain
readily using basic elasticity theory@40# or the equivalent inclu-
sion method@41#. The radial displacement, radial and tangent
stresses in the elastic domain are found to be:

Fig. 2 A rigid sphere in an infinite elastic domain V
JANUARY 2005, Vol. 72 Õ 119
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Fig. 3 A boundary element model of the sphere „with 1944 surface elements …
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s r~r !5s`F11
2~122n!

11n

a3

r 3G , (24)

su~r !5s`F12
122n

11n

a3

r 3G , (25)

respectively, wherea is the radius of the sphere,E the Young’s
modulus, andn the Poisson’s ratio of the elastic medium. No
that ur(a)50, which is the result for a rigid sphere.

The convergence of the BEM is studied with several bound
element meshes for the sphere. The finest mesh used~with 1944
elements! is shown in Fig. 3. The radial stress computed by
BEM on the surface is compared with the analytical solution@Eq.
~24!# and the relative errors are plotted in Fig. 4 for differe
meshes with increasing numbers of elements. The error with
coarsest mesh~120 elements! is 4.93%, while that with the fines
mesh ~1944 elements! is 0.19%. The convergence of the BEM
results is achieved. The field displacement and stresses within
elastic domain are plotted in Figs. 5 and 6, respectively, for
coarsest mesh~120 elements! to deliberately show the errors o
the BEM. Even though the results on the surface for this coa
mesh contain a relatively larger error~4.93% for radial stress, Fig
4!, the results inside the domain~away from the surface! are quite
good. This is one of the advantages of the BEM approach, wh
uses integral representation@e.g., Eq.~5!# for this calculation that
tends to reduce the errors inside the domain. Note that both
radial and tangential stresses tend to the applied far-field s
s`, as the distancer from the center of the sphere increases. T
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stress contour plot forsx on the surface~boundary of the me-
dium! is given in Fig. 7 for the finest mesh~shown in Fig. 3!. The
boundary stress field is obtained by using the traction results
averaged at each corner node using results on the surroun
elements. Note the increase of the stress value on the surface~with
a stress concentration factor of 1.6154! and its location due to the
presence of the rigid sphere in the elastic medium.

The excellent agreement of the BEM results with the analyti
solution for this example suggests that the developed new
formulation and its BEM implementation are correct and effe
tive. Fiber-reinforced composite materials will be considered n
using this rigid-inclusion model and the BEM approach.

5.2 Short-Fiber-Reinforced Composites. Modeling of
fiber-reinforced composites using the rigid-inclusion model a
the developed BEM is considered in this and next examples. S
fibers in a matrix are more likely to act like rigid rods@18# if their
stiffness is more than an order of magnitude higher than tha
the matrix. Several representative volume elements containing
ferent numbers of fibers are used to study the interactions of
fibers and to estimate the effective properties of the compos
We limit our attention to short and moderately long fibers in
matrix, where the aspect ratio~length/diameter! of an inclusion is
kept below 20. The main purpose of these examples is to show
capabilities and promises of the developed fast BEM in lar
scale modeling of fiber-reinforced composites. The models s
ied here are simple and ideal in nature, with more realistic o
being left for future applications.

The RVEs considered in this study are of finite sizes andem-
beddedin an infinite domain with the same material as that of t
matrix ~cf., similar inclusion models in 2D infinite space reporte
in Refs.@9–14,16,17#!. In this way, the problem can be posed
Transactions of the ASME
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Fig. 4 Convergence of the BEM results for surface radial stress s r„a…
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an infinite domain problem and the structure of Eq.~20! can be
preserved.@A RVE model as a finite domain problem can be eas
implemented with some modifications of Eq.~20! to consider di-
rect loading on the surfaces of a RVE.# In the current embedded
RVE models, a far-field uniaxial tensile stress is applied in
x-direction~Fig. 8!. To estimate the effective Young’s modulus
a composite in one direction~e.g., the fiber orx-direction!, the
displacements and stresses at some surfaces of the RVE,
called data-collection surfaces~Fig. 8!, are computed using Eq
~5! and its gradients, after the tractiont is determined for each
rigid inclusion by solving the BIE equations. The effectiv
Young’s modulus of the composite is estimated using the displa
d Mechanics
ily

he
f

o be
.

e
ce-

ment and stress results at these data-collection surfaces by
following formula ~which ignores the stresses on the lateral s
faces that have been found much smaller in value compared
sx in the cases studied!:

Eeff5
~sx!~ave!L

~Dux!~ave!
, (26)

whereEeff is the estimated effective Young’s modulus of the co
posite in thex-direction ~Fig. 8!, and the displacement and stre
averaged over the data-collection surfaces~Fig. 8! are obtained
by:
Fig. 5 Radial displacement „Ãs`aÕE… obtained by the BEM model with 120 elements
JANUARY 2005, Vol. 72 Õ 121



122 Õ Vol. 72,
Fig. 6 Radial and tangential stresses „Ãs`
… obtained by the BEM model with 120 elements

Fig. 7 Contour plot for stress sx„Ãs`
… on the surface of the rigid sphere
JANUARY 2005 Transactions of the ASME



c
t

V
h

n

t
i

er
.
a
.

is

6%
atio

r
ber,

der
at

two
f the
on-
s

m

ri-
12.

site
rs

e
and
ith a
ef-

e

p-
li in
VEs
gest
u-
on,
ose

ct
ent
ur
to
e
n
ther
stic

this
ER
nd
us

the
the

in-
le
er-

5
t

~Dux!~ave!5~ux~x5L/2!!~ave!2~ux~x52L/2!!~ave! , (27)

~sx!~ave!5@~sx~x5L/2!!~ave!1~sx~x52L/2!!~ave!#/2, (28)

with L being the length of the RVE in thex direction Fig. 8, the
origin of the coordinate system is located at the center of
RVE!. In this way, the effective modulus is obtained as the lo
elastic constant of the volume with inclusions. One may argue
the effective modulus in~26! is an apparent property because it
obtained using an infinite domain that acts as part of the ‘‘load
device.’’ Indeed, the effectiveness of this approach with a R
embedded in the infinite domain needs to be verified with ot
results and improved RVE models can also be developed.
reader is referred to Sec. 6 for further discussions and an atte
to verify the proposed approach.

A mesh with 456 boundary elements for a short, cylindric
fiber of an aspect ratio equal to 5~length550 and diameter510! is
shown in Fig. 9. This mesh is sufficient for obtaining converg
results for the estimated effective moduli. The fiber is initial
placed at the center of a box of dimensions 100320320 ~chosen
arbitrarily! and filled with the matrix material. This box is the
repeated in thex-, y-, and z-directions to generate the multiple
fiber RVE models. Three different distributions and orientations
the fibers are considered. The first case is the uniform distribu
of aligned fibers, to be called theuniformcase. The second case
a ‘‘random’’ distribution of aligned fibers, where the fibers are st
aligned in thex-direction, but their locations are shifted random

Fig. 8 A RVE of a short fiber-reinforced composite

Fig. 9 A BEM mesh used for the short fiber inclusion „with 456
elements …
Journal of Applied Mechanics
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in the x-, y-, and z-directions to such an extent that each fib
remains in its own box~territory! to avoid contact of the fibers
This case is called thealigned randomcase. The third case is
‘‘random’’ distribution and ‘‘random’’ orientation of the fibers
Again the random distribution and~small angle! rotation of a fiber
is limited to the extent that it remains in its own box. This case
named therandom~or to be more precise, acontrolled random!
case. In all the cases, the volume fraction of the fiber is 9.1
based on the dimensions of the RVE and fibers. A Poisson’s r
of 0.3 is used for the matrix.

Figure 10 shows the contour plot of surface stresssx ~in the
matrix! for the RVE containing 216 ‘‘random’’ short fibers. Fo
each fiber, high stresses occur around the two ends of the fi
which is consistent with the theory that in the limit as the slen
inclusion becomes a rigid line, singularity of stresses will arise
the two tips@9#. Values of these stresses are even higher when
fibers are closer to each other, suggesting closer interactions o
fibers. This stress plot is typical among all the studied RVEs c
tainingq3q3q fibers, withq52, 3, 4, 6, 8, 10, 12, and 13 in thi
example. The largest RVE with 2197~an array of 13313313!
‘‘random’’ fibers is shown in Fig. 11. The total degrees of freedo
for the model in Fig. 11 is 3 018 678~521973~6145633!!.

The normalized Young’s moduli (Eeff /Ematrix) of the compos-
ites, estimated with the three different fiber distributions and o
entations using the above mentioned RVEs, are plotted in Fig.
The increase of the effective Young’s modulus of the compo
estimated by the RVEs with uniform distributions of aligned fibe
ranges from 28.1% to 40.8%~a difference of 45.2%! as the num-
ber of fibers~or size of the RVEs! increases from 8 to 2197. Th
values of the modulus in this uniform case increase gradually
tend to a constant value. These results suggest that a RVE w
smaller number of short fibers is inefficient for obtaining the
fective properties accurately with Eq.~26! even in the cases with
uniform distributions of aligned fibers~without considering the
periodic boundary conditions!. The estimated increases of th
Young’s moduli in thealigned randomand randomcases range
from 27.7% to 46.2% and oscillate within this range until a
proaching another constant. Surprisingly, the estimated modu
the aligned random and random cases are higher for most R
than those in the corresponding uniform case. This may sug
that the load transfer may be improved by the ‘‘random’’ distrib
tions of fibers in a short-fiber composite. However, in comparis
the values of the effective moduli are about 30% lower than th
predicted by the theory and BEM~for incompressible materials!
reported in Ref.@18# for the same fiber volume fraction and aspe
ratio. This may be due to the fact that the fibers in the curr
models are confined within their own boxes and no ‘‘relays’’ occ
in the fiber direction, even in the ‘‘random’’ case, which leads
‘‘weakest-link’’ regions between two arrays of fibers. While in th
models used in Ref.@18#, aligned fibers are placed randomly i
the RVE and therefore better load transfer are achieved. Fur
tests on the current BEM can be carried out with more reali
distributions of the fibers.

Figure 13 shows the CPU time used to obtain results in
short-fiber composite example, on a FUJITSU PRIMEPOW
HPC2500 machine~a shared memory machine with 96 CPUs a
384GB memory! and using four CPUs. In this example, no serio
attempts have been made to parallelize the code except for
automatic parallelization made by the compiler. Contrary to
traditional BEM where the solution time is ofO(N3) ~with N here
being the total number of DOFs!, the CPU time required for solv-
ing a model using the fast multipole BEM is only ofO(N) as
shown in Fig. 13~a straight line with the slope close to unity!.
Furthermore, the memory required for solving a problem also
creases linearly with the size of the problem for fast multipo
BEM. Also, the number of iterations required to reach the conv
gence with a tolerance of 1025 in using the GMRES is between
~for N510 992) and 7~for N53 018 678). Therefore, the fas
JANUARY 2005, Vol. 72 Õ 123
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Fig. 10 Contour plot of surface stresses „Ãs`
… for a model with 216 ‘‘randomly’’ distributed

and oriented short fibers
r
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and
multipole BEM is much faster and more efficient as compa
with the traditional BEM~further discussions and examples c
be found in Refs.@21,39#!.

These preliminary results in modeling short-fiber-reinforc
composites clearly demonstrate the effectiveness and robus
of the developed fast multipole BEM based on the rigid-inclus
model.
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5.3 Long-Fiber-Reinforced Composites. Composites rein-
forced with relatively long fibers, with an aspect ratio of 1
~length580 and diameter55!, are studied using the develope
BEM. Each fiber is discretized using 600 boundary elements
placed in a box of the same dimensions~100320320! as in the
short-fiber example. This box is then repeated in thex-, y-, and
z-directions to generate RVEs containingq3q3q fibers, withq
Fig. 11 A RVE containing 2197 short fibers with the total DOF Ä3 018 678
Transactions of the ASME
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Fig. 12 Estimated effective Young’s moduli in the x -direction for the composite model with
up to 2197 short rigid fibers „fiber volume fraction Ä9.16%…
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52, 3, 4, 6, 8, 10, 12, 13, 15, and 18 in this example. The larg
model with 5832 fibers and 10 532 592 DOFs~58323~61600
33!! is shown in Fig. 14. The fibers are arranged in the so ca
‘‘random’’ manner as in the short-fiber RVEs. Again, these a
‘‘controlled random’’ distributions~each fiber within its own box!
and orientations~with small rotation angles! of the fibers so that
no contact among them occur in the RVEs. The volume fraction
the fiber is 3.85% for all the long-fiber models in this examp
The Poisson’s ratio for the matrix is 0.3.
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Figure 15 shows the normalized effective Young’s mod
(Eeff /Ematrix) computed for the composites with the relatively lon
fibers using the RVEs in the uniform and ‘‘random’’ cases. T
increases of the computed effective moduli are about two tim
higher in these long-fiber cases than those in the short-fiber ca
even though the fiber volume fraction is lower. This is expec
since aligned long fibers are better for load transfer in a comp
ite. The increases in the values of the modulus range from 75
to 95.0% for the uniform case and from 65.4% to 87.6% for t
Fig. 13 CPU time used for solving the BEM models for the short-fiber cases
JANUARY 2005, Vol. 72 Õ 125
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Fig. 14 A RVE containing 5832 long fibers with the total DOF Ä10 532 592
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random case. Results for the uniform case increase gradually
the increase of the RVE sizes and tend to a constant v
~95.0%!. The values obtained for the ‘‘random’’ case fluctuate f
the smaller RVEs and also approach a constant for the la
RVEs. However, the increases in the ‘‘random’’ case are about
lower than those in the uniform case in this long-fiber examp
This suggests that even small misalignment and rotations of
fibers~which are uniformly and closely packed in the fiber dire
tion initially! will offset the enhancement in the stiffness for lon
fiber composites. The largest RVE model~with 5832 fibers and
10 532 592 DOFs! can be solved in 3 h and 40 min~wall-clock
ANUARY 2005
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time! on the PRIMEPOWER HPC2500 computer using 32 CPU
with a tolerance of 1025 in the solution with GMRES and ten
term expansion in the FMM. The code used for this example w
parallelized with minimum efforts using OpenMP and automa
parallelization option of the compiler.

Rapid convergence is achieved in this case also. The numb
iterations in solving the preconditioned system using the GMR
iterative solver is between 5~for N514 448) and 11~for N
510 532 592) with a tolerance of 1025. This shows that the pre
conditioner in~22! works very well even in problems when th
Fig. 15 Estimated effective Young’s moduli in the x -direction for the composite model with
up to 5832 long rigid fibers „fiber volume fraction Ä3.85%…
Transactions of the ASME
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aspect ratio of the inclusions is as large as 16. The robustne
the developed BEM for modeling fiber-reinforced composites
demonstrated again by this example which has reached 10 mi
DOFs for the boundary element method.

6 Discussions
The developed fast multipole BEM for the analysis of fibe

reinforced composites based on the rigid-inclusion model
been demonstrated to be very effective and efficient for large s
models. Interactions of the fibers, load transfer mechanisms
effective properties of a composite can be investigated rea
using the BEM code with different parameters, such as fiber
pect ratios, volume fractions, waviness, distributions, and orie
tions. However, further studies are needed regarding the effec
ness of the model and method for evaluating the effec
properties of the composite materials, since the rigid-inclus
model has some obvious limitations. For example, the effec
the ratio of the Young’s modulus of the fiber to that of the mat
for a composite can not be accounted for in the rigid-inclus
model ~this ratio is equal to infinity in the rigid model for an
matrix material!. Although there are a large amount of experime
tal data and numerous analytical results based on different the
for estimating the effective properties of fiber-reinforced comp
ites, direct comparison of the BEM results with these data was
attempted in this study~except with that in Ref.@18#!, because of
the wide variations in those data. More realistic models of
fiber-reinforced composites using the rigid or elastic inclusion
proaches need to be studied using the developed BEM in fu
applications.

The boundary integral equation developed for this study,
~6!, is essentially an integral equation of the first kind, which, us
in its original form, may raise the question of stability and co
vergence of its solutions when using iterative solvers as in
FMM. Our experience has shown that even for integral equati
of the first kind, the FMM BEM, which uses iterative solvers su
as GMRES, can still deliver fast converging and stable res
with good preconditioners. Our selection of using the right p
conditioner in Eq.~22! turns out to be very effective.

The RVE used in this study is of finite size as shown in Fig.
that is embedded in an infinite space filled with the matrix ma
rial and loaded remotely~cf., again, 2D models in infinite spac
used in Refs.@9–14,16,17#!. This is chosen so that an infinit
domain problem can be solved, which is easier to handle conc
ing the boundary conditions and, in general, converges faster
an interior problem using the FMM. In this infinite domain pro
lem, the displacement and stress fields on the surfaces of the
~data-collection surfaces! need to be calculated after the bounda
solutions on all the inclusions are obtained with the fast multip
BEM. This calculation of the fields inside the domain takes ex
CPU time, which can be substantial for large models, althoug
can be computed by using the FMM also@30#. An interior prob-
lem defined on the finite sized RVE directly can certainly
implemented with some modifications of Eq.~20! and may pro-
vide some improvements to the current RVE model. For exam
the boundary solutions~displacements and tractions! on the RVE
surfaces, which are available after the solution of an interior pr
lem, can be used directly to evaluate the effective propertie
more reliable, and perhaps more elegant, approach for compu
the effective modulus is to use FMM for periodic boundary co
ditions @25#. Our preliminary analysis with the two dimension
Laplace problems@17# shows that the periodic FMM BEM can b
implemented easily, and the increase of the CPU time over
ordinary FMM is less than 20%. The effective property obtain
with an equivalent formula of~26! and with the periodic FMM did
not differ very much. The elastic counterpart of the periodic FM
is now underway.

The rigid-inclusion model for fiber-reinforced composites m
have the potential in some very urgent applications, such as m
eling of the emerging carbon nanotube~CNT!-based composites
Journal of Applied Mechanics
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~see, e.g., Refs.@42–45#!. The Young’s moduli of carbon nano
tubes are in general greater than 1 TPa along the tube direc
about two orders higher than those of many matrix mater
@43,44#. To model the CNT-based composites, continuum mech
ics approaches using the FEM or BEM@46–49# may still be ap-
plied if the overall behaviors and properties of the CNT-bas
composites are to be investigated. However, CNTs are usu
produced in different shapes and sizes~for example, being curved
twisted, or bundled!, and are difficult to align in a composite
Thus the computational models for such composites may nee
contain a much larger number of fibers in a RVE, as compare
those for traditional composites for which the fibers can
aligned easily and distributed uniformly, mainly because of th
larger scales. The BEM can model multimaterial problems ea
since it uses elements only on boundaries and interfaces of
problem domain. With the fast multipole BEM, the solution tim
has also been reduced dramatically for large-scale problems.
rigid-inclusion model further simplifies the BEM approach a
increases its efficiency in the analysis of some special compo
materials, as demonstrated by the examples in the previous
tion. All these features and new development make the BEM v
appealing in large scale analysis of CNT-based composites
estimating their overall mechanical properties. Studies are un
way along this line in modeling CNT-based composites by us
the developed fast multipole BEM with new interface conditio
based on molecular dynamics simulations of CNT-fiber pullo
tests.

The work reported in this paper, on using the rigid-inclusi
models for analyzing fiber-reinforced composites, is only the fi
step in the development of a more general FMM BEM for stud
ing such materials and many others. The developed BIE form
tion and the FMM BEM can be extended readily for other pro
lems. A FMM BEM solver for general inclusion problems can
developed, where the inclusions can be elastic or rigid, or sim
a void. Other RVE models, for example, with periodic bounda
conditions, can be implemented as stated above. Interfacing
developed BEM with other methods~such as molecular dynamics!
for multiscale analyses of CNT-based composites can also be
sidered and may present unique advantages over other dom
based methods. Higher-order boundary elements can be appli
further increase the efficiency and accuracy of the BEM. A pr
tical and important development for the BEM code is to deve
an improved preprocessor that can generate the boundary ele
mesh for a RVE containing a large number of truly random
distributed and oriented fibers, including curved ones, so
more realistic models of composites can be analyzed based on
experimental or fabrication parameters. Finally, full parallelizati
of the BEM code can be implemented to further increase the
bustness of the developed fast multipole BEM for even lar
models based, eventually, directly on scanned 3D models of c
posite material samples.

7 Conclusion
A new boundary integral equation formulation for the analy

of an elastic medium containing rigid inclusions is derived in th
paper. This new BIE contains only the weakly-singular displa
ment kernel from the fundamental solution and thus is much m
efficient to solve than the traditional singular BIE. The fast m
tipole boundary element method is employed to solve this n
BIE. The developed BIE formulation and FMM BEM code a
found to be very stable and the results converge in about 10 it
tions for a tolerance of 1025 with the preconditioned GMRES
The numerical results for a spherical rigid inclusion in an elas
domain match very closely with the analytical solution. Short- a
moderately long-fiber-reinforced composites are investigated
ing the developed BEM and their effective Young’s moduli a
estimated using the BEM displacement and stress results for
representative volume elements. The largest model studied
tains more than 5800 fibers and has the total degrees of free
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over 10 millions. These preliminary results clearly demonstr
the effectiveness, efficiency and promises of the developed
multipole BEM for studying fiber-reinforced composites, wh
the fibers are much stiffer than the matrix material.
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