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Abstract

Three boundary integral equation (BIE) formulations are investigated for the analysis of electrostatic fields exterior to thin-beam
structures as found in some micro-electro-mechanical systems (MEMS). The three BIE formulations are: (1) the regular BIE using only
the single-layer potential; (2) the dual BIE (a) using the regular BIE on one surface of a beam and the gradient BIE on the other surface;
and (3) the dual BIE (b) using a linear combination of the regular BIE and gradient BIE on all the surfaces of the beam. Similar to crack
problems in elasticity, the regular BIE degenerates when the beam thickness tends to zero, while the two dual BIE formulations do not
degenerate. Most importantly, the dual BIE (b) is found to be well conditioned for all the values of the beam thickness, and thus well
suited for implementation with the fast multipole BEM. The fast multipole BEM for both the regular BIE and the dual BIE (b)
formulations are developed and tested on a simplified comb-drive model. The numerical results clearly show that the dual BIEs are very
effective in solving MEMS problems with thin beams and the fast multipole BEM with the dual BIE (b) formulation is very efficient in

solving large-scale MEMS models.
© 2006 Published by Elsevier Ltd.
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1. Introduction

Boundary integral equation (BIE) formulations and their
numerical solutions using the boundary element method
(BEM) [1-5] are well suited for the analyses of the thermal,
electrical and mechanical fields in micro-electro-mechanical
systems (MEMYS), because of the advantages of the BEM in
handling complicated geometries and infinite domain
problems. Some of the early work using the BEM for
modeling MEMS problems include papers in [6-8] for
electrostatic analysis of fields exterior to MEMS structures,
in [9] for dynamic analysis and in [10] for coupled
mechanical-electrical analysis. Most recently, a thin-beam
BIE (in 2-D) and a thin-plate/shell BIE (in 3-D) for the
electrostatic analysis of MEMS problems have been
proposed in [11,12], with the analogy to the crack problems
in elasticity. These thin-beam and thin-plate/shell BIEs
only need to model one surface of such structures with the
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BEM and thus are very efficient in analyzing complicated
MEMS problems with very thin structures. Modeling
MEMS problems using 2-D models has limited applica-
tions, but can be applied in preliminary studies of the
MEMS problems if the fields are mainly confined in a 2-D
space. The works in [12-14] are some recent examples in
solving the electrostatic fields using the BIEs for 2-D
models.

Analysis of MEMS problems often requires large models
that can accurately predict the rapidly changing fields
surrounding complicated structures. The conventional
BEM approach requires O(N®) operations to solve the
BEM system using direct solvers (with NV being the number
of equations) or O(N?) operations using iterative solvers.
Thus the conventional BEM is often found inefficient in
solving large-scale problems with the number of equations
above a few thousands. The fast multipole method (FMM)
[15-17] and other fast methods can be used to accelerate
the solutions of the BEM by several folds, promising to
reduce the CPU time and memory usage in the fast
multipole accelerated BEM to O(N). A comprehensive
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review of the fast multipole accelerated BEM can be found
in Ref. [18]. Applications of the fast multipole and other
related fast BEM approaches for modeling MEMS
problems can be found in [19-21] using the FMM and in
[22,23] using the precorrected-FFT method.

In this paper, three BIE formulations are investigated for
the analysis of electrostatic fields exterior to thin-beam
structures as found in MEMS problems, including: (1) the
regular BIE; (2) the dual BIE (a) using the regular BIE on
one surface of the beam and the gradient BIE on the other
surface; and (3) the dual BIE (b) using a linear combination
of the regular BIE and gradient BIE on all surfaces of the
beam. Compared with the thin-beam BIE [12] where only
one surface needs to be discretized using boundary
elements, the dual BIE approaches need to solve systems
of equations that are twice as large as in using the thin-
beam BIE. However, separate charge densities can be
obtained directly from the BEM equations using the dual
BIE formulations and no additional post-processing needs
to be performed in order to obtain the charge densities. The
FMM is used to accelerate the dual BIE solutions and the
larger system of equations does not present any difficulties
in modeling MEMS problems.

In the literature, a dual BIE approach has been applied
in [14] to MEMS problems for estimating the errors in the
BEM solutions and for directly computing the tangential
electric field. A dual BIE formulation has also been
proposed in [21,24] for evaluating damping forces due to
Stokes flows in MEMS problems. To the author’s best
knowledge, the suitability of the dual BIEs for modeling
electrostatic problems in MEMS with thin beams and their
combinations with the fast multipole BEM have not been
reported in the literature.

This paper is organized as follows: in Section 2, the three
BIE formulations for 2-D electrostatic problems are
reviewed. In Section 3, the fast multipole BEM for these
electrostatic BIEs are presented. In Section 4, numerical
examples are presented to demonstrate the effectiveness of
the BIEs for thin-beam problems and the efficiencies of the
fast multipole BEM for large-scale MEMS problems. The
paper concludes with some discussions in Section 5.

2. The BIE formulations

Consider a 2-D infinite domain V' embedded with many
thin electric conductors (Fig. 1). The electric potential ¢ in
V satisfies the Laplace equation and can be given by using
the following representation integral:

000 = [ |1 Guyetn =250 o) asw
sle on(y)
+C, VxeV, (1)

where S =US, is the boundary of V, ¢ the dielectric
constant, G&,y) the Green’s function given by

1 1
G(x,y)=%1n<;>, with r:‘x—y’. (2)
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Fig. 1. A domain V embedded with many thin electric conductors.

o the charge density defined by

3
=, 3

with n being the outward normal, and C a constant
representing the potential at infinity. If the potential on
each conductor is kept constant (with applied voltage), the
integral of the second term in Eq. (1) vanishes due to the
properties of the kernel (see, e.g., Ref. [25]) and Eq. (1) is
reduced to

ay)=e

P(x) = é/s G(x,y)o(y)dS(y)+ C, VxeVUS§, 4)

where the source point x can be placed on the boundary S
directly due to the smoothness of the G kernel. Eq. (4) with
xe S is called the regular BIE in Ref. [12].

Taking the derivative of Eq. (4) with xe V' and then
letting x go to the boundary, one obtains the following
gradient BIE [12]:

1
5900 = [ Fxyo)dsw. vxe's ©)
N

for smooth boundary S, in which the singular kernel F is
given by

oG
Fooy) = 672{){)}, :

Note that Eq. (5) is a homogeneous equation and cannot
be applied alone to solve for the charge density on the
surfaces directly. In fact, the system of equations using BIE
(5) must be singular in general, otherwise one can always
conclude that ¢ = 0 on the boundary.

In Ref. [12], a thin-beam BEM approach is developed
based on the regular BIE (4) and gradient BIE (5) by taking
the limit as the thickness of the beam tends to zero.
In the limit as the two main surfaces of a beam become
close to each other, BIE (4) degenerates and thus cannot be
used to solve for the charge densities on the top
and bottom surfaces separately. However, the thin-beam
regular BIE from (4) can be applied to solve for the sum

(6)
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of the charge densities on the top and bottom surfaces
of each beam and the thin-beam gradient BIE from
(5) can be applied to determine the separate charges in a
post processing stage [12]. The thin-beam BEM based on
this approach is very efficient for thin-beam models (e.g.,
with the thickness to length ratio of a beam /4/L<0.001),
since only one surface needs to be discretized for each
beam.

In this paper, a different approach is proposed to
modeling MEMS with thin beams. As shown in Fig. 1,
those thin beam like conductors are similar to open cracks
(when the beam thickness is small but finite) or true cracks
(when the beam thickness is approaching zero) in elasticity
problems. For crack problems, the dual BIE (or composite
BIE) approaches combining the regular BIE and
gradient BIE have been proven to be very effective
[26,27]. The advantages of using the dual BIE approaches
are that they are valid for both open crack and true crack
cases, without the need to switch the BIE formulations, and
the original boundary variables can be solved directly.
Because of the similarities mentioned above, the dual BIE
approaches should be equally effective in solving electro-
static problems with thin beams (inclusions). The following
two dual BIE formulations are tested in this study and both
are found to be effective for modeling MEMS with thin
beams.

(a) Dual BIE (a): In this approach, the regular BIE (4) is
applied on the top and edge surfaces of a beam while
the gradient BIE (5) is applied on the bottom surface of
the beam [26,27]. The disadvantage of this approach is
that the coefficients are not uniform regarding their
orders of magnitudes, since part of them are from the
regular BIE and the other part from the gradient BIE
which has a different order of singularity.

(b) Dual BIE (b): In this approach, a linear combination
of the regular BIE and gradient BIE is applied on the
entire surfaces of the domain (all the beams), in the
form:

o(regular BIE) 4 f(gradient BIE), @)

where o and f are two constants. The selection of the
parameters o and f3 is crucial for the performance of the
dual BIE (b). In general, f should be smaller relative to
o, so that the gradient BIE will not dominate in this
dual BIE formulation. In this study of MEMS
problems with thin beams, the choice of « = 1 and ff =
hy — h has been found to be sufficient, with %, being a
reference thickness and % the thickness of the beam.
For acoustic problems, Eq. (7) is the Burton—Miller
BIE formulation that is very effective in overcoming
the fictitious eigenfrequency difficulties for exterior
acoustic problems (see, e.g., [28,29]). The advantage of
this linear combination is that the same BIE formula-
tion is applied uniformly over the entire boundary and
thus better conditioning can be expected, as will be
shown in this paper.

Both conventional BEM and fast multipole BEM codes
based on the above BIE formulations have been developed
in this study. For constant elements (line segments), both
the G and F integrals in BIEs (4) and (5) can be integrated
analytically, for all non-singular, nearly singular, or
singular cases. Thus, the codes can handle very thin beams
with very small but finite thickness or small gaps in the
MEMS models, without any difficulties regarding the
nearly singular or singular integrals.

3. The FMM

The FMM can be employed to accelerate the BEM for
solving Egs. (4) or (7). The main idea of the FMM is to
translate the node-to-node (or element-to-eclement) interac-
tions to cell-to-cell interactions using various expansions and
translations. Iterative equation solvers (such as GMRES) are
used in the FMM, where matrix—vector multiplications are
calculated using fast multipole expansions. Using the FMM
for the BEM, both the solution time and memory require-
ment for solving a problem can be reduced to order O(N),
with N being the total number of unknowns.

The fast multipole BEM for 2-D potential problems has
been well documented (see, e.g., Refs. [17,18,30]). For
completeness, the main results for the G kernel integral in
BIE (4) are summarized first. Then the treatment of the F
kernel integral in BIE (5) is discussed.

The G kernel in BIE (4) can be represented by complex
variables as [17,18,30]:

1 1 &
Gz0.2) = —5-In(z0 —2) = 5-  Oilz0 — o)
k=0

xIi(z — z.), (®)

in which zyp = x| + ix; and z = y; 4 iy,(i = ~/—1) represent
x and y, respectively, z. is an expansion point close to z,
and the two auxiliary functions are defined by

k

Ii(2) = 5

o=

0y(z) = —In(2).

for k=0,

for k>=1; and

The integral in the regular BIE (4) can be evaluated using
the multipole expansion:

[ Gerzordse =525 0w —zamco. O
So =0

where Sy is a subset of S away from x, and the moment
about z, is

Amm=Luuﬁmww@. (10)

If the expansion point z. is moved to a new location z.,
one has the following M2M translation for the moments:

k
Mi(ze) =Y Lii(ze — 2o )Mi(20). (11
1=0
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Let z; be a point close to zy, one can have the following
local expansion:

| GG 0486 = Y- Litzntitzo = =), (12)
0 =0

where the coefficients are given by the following M2L
translation:

(1)

Lizp) = ZaMQﬁmmm (13)
If the point for local expansion is moved from z; to z;/,
one has the following L2L translation:

o
Li(zp) =Y Tni(z — z0)Ln(z1). (14)
m=[
Now consider the integral with the F kernel in the
gradient BIE (5):
0G(29,2)

/SO F(ZO,Z)U(Z) dS(Z) = /So an(z())

which is different from the F kernel integral in Ref. [30]
where the normal derivative is at the field point z. There are
two ways to handle this integral. One way is to shift the
derivative to the field point and introduce a new moment.
Then all the M2M, M2L, and L2L translations will be the
same as given above. However, it is found that this
approach requires additional memory for storing the new
moment. Another way to handle this integral is to keep the
derivative at the source point and apply the same moment
as used for the G kernel integral. In this way, no new
moment need to be stored and only the M2L translation
need to be modified. This approach is used in this study
and discussed in the following.

F(z¢, z) can be expressed as

o(z)dS(z2), (15)

Fm@=%%%=m+mmwemwa
with G = ng (16)
0

One has from Eq. (8):
G 1
=— 2—2 Ok+1(20 — z) k(2 — z.). (17)

Thus the multipole expansion for the F kernel integral in
BIE (5) can be given by

/s F(zo,2)0(z)dS(2)

=—— n(zo) Z Oky1(20 — 20) M (2,), (18)
k=0
where M) (z.) is the same moment as given in Eq. (10).
It can also be shown that the M2M and L2L translations
and the local expansion for the F kernel integral remain the
same as for the G kernel integral, except that the M2L

translation is changed to:

1+1

2n

n(z0) Y Orpini (L — 2Mi(z). — (19)
k=0

Li(zp) = -

The fast multipole BEM is implemented for both the
regular BIE and dual BIE (b) formulations based on
the fast multipole BEM code presented in Ref. [30]. The
procedures and implementation details of the fast multi-
pole BEM based on the above expansions and translations
are similar to those for the general 2-D potential problems,
which can be found in Ref. [30]. For constant elements, the
moments can be evaluated analytically and thus no
numerical integrations are used for the fast multipole
BEM in this study.

4. Numerical examples

Numerical examples are presented to demonstrate the
effectiveness and accuracy of the dual BIE formulations for
electrostatic analysis of thin beam problems and the
efficiency of the fast multipole BEM for modeling 2-D
MEMS models.

(a) Two parallel beam models using the three BIE
Sformulations and conventional BEM: A two parallel beam
model (Fig. 2) suggested in Ref. [12] (in which d = 0) is
considered first to verify the BIE formulations using the
conventional BEM. The length of the beam is L, thickness
is i, and gap between the beams is g. An offset d in the x
direction may also be introduced between the two beams
(Fig. 2). A potential V'is applied to the top beam, while the
negative potential (—¥) applied to the bottom beam. For
this problem, the analytical solution for the charge density
o~ on the lower surface of the top beam (Fig. 2) is given by
(see, e.g., Ref. [31]):

_ 0 AV 2V
S Tt T AT g’ (20)
for the region away from edges of the beams. This formula
is used to verify the BEM results.

One model, with the parameters ¢ =1, L=0.01m,
h=0.000lm, g =0.0011lm,d=0, V=1, C=0, is tested
first with the regular BIE, dual BIE (a) and dual BIE (b)

y A
a* L lh
|+V
o A
g X g
|-v
+0" L Th
> —

Fig. 2. A two parallel beam model for testing the BIE formulations.
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and solved with the conventional BEM using constant
elements. The number of elements along the beam length
direction is increased from 10, 20, 50, to 100, while 5
elements is used on each edge (side) of the beams,
corresponding to BEM models with 30, 50, 110, and 210
elements per beam, respectively. The BEM results using the
three BIE formulations converged very quickly. Fig. 3
shows the convergence of the BEM results using the dual
BIE (b) for the charge densities on the lower and upper
surfaces of the top beam (Fig. 2). In fact, the model with
just 10 elements along the beam length direction yields a
value of ¢~ at the middle of the lower surface of the top
beam that agrees with the analytical solution (¢~ = 1818 in
this case) within the first four digits. With the increases of
the elements along the beam length direction, only results
near the two edges of the beam change, tending to infinity
due to the singularity of the field at the edges [12].

Fig. 4 shows the charge density on the top beam in
the same parallel beam model, but with an offset
d=¢g=0.0011m, and using 210 elements per beam. The
charge densities in the middle of the beam remain the same
(6~ = 1818) while the fields near the edges have marked
changes. The charge densities on the bottom beam (Fig. 2)
have negative values and are “‘anti-symmetrical” relative to
the results on the top beam and thus are not plotted.

The effectiveness of the dual BIE formulations in solving
cases with extremely thin beams is demonstrated next.
Table 1 is the comparison of the charge densities on the top
beam in the two-beam model with a different set of
parameters (¢=1, L=0.0lm, ¢g=0.0014+4A d=0,
V=1, C=0, and 210 elements per beam). The ratio &/
L is changed from 0.1 to 107'%. The regular BIE (Eq. (4))
works very well until the ratio 4/L reaches 1075, after
which the regular BIE degenerates for thin-beam problems.
The high accuracy of the regular BIE is most likely
contributed by the analytical integration of all integrals,

3000
2800 o ot |
2600 ' 10 elememts/length 10 elememts/length !
2400 L » 20 elememts/length s 20 elememts/length !
* x 50 elememts/length o 50 elememts/length f‘
2200 1| — - 100 elememts/length 100 elememts/length
2000 1 J“X%
2 1800 -%***
Z 1600
Q
T 1400
£ 1200 -
S 1000 1
800
600
400 H
200 1
O 4
-200

0 0.0010.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
X (m)

Fig. 3. Convergence of the BEM results using dual BIE (b) on the top
beam in the parallel beam model (¢=1, L=0.0lm, /4= 0.0001m,
g=0.00llm,d=0,V=1,C=0).

3600
3400 A
3200 A - N
3000 1
2800 1
2600 1
2400 1
2200 1
2000 1
1800

|

J
1600 -‘
1400
1200 A
1000
800
600
400
200

0 1
-200

Charge density

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
X (m)

Fig. 4. Charge density on the top beam in the parallel beam model with
offset (¢=1, L=0.0lm, 27=0.000lm, g =0.00llm, d=g, V=1,
C =0, 210 elements per beam).

Table 1

Comparison of the charge densities on the top beam in the two-beam
model (¢=1, L=00lm, g=0001+h d=0, V=1, C=0, 210
elements per beam)

H/L Regular BIE Dual BIE (a)  Dual BIE (b)  Analytical
solution
— + — + — + —
a a o o o o o

1.OE—-1 1000  95.18 1000 9521 1000 95.18 1000
5.0E-2 1333 103.0 1333 103.0 1333 103.4 1333
1.0E-2 1818 112.0 1818  112.0 1818 113.0 1818
5.0E-3 1905 1135 1905 113.5 1905 1148 1905
1.OE-3 1980 1149 1980 1149 1980 1159 1980
1.0OE—4 1998 1154 1998 1154 1998 1157 1998
1.0OE-5 2000 1155 2000 1155 2000 1156 2000
1.OE—6 2000 1155 2000 1155 2000 115.6 2000
1.OE-=7 2000 1155 2000 1155 2000 115.6 2000
1.OE-8 2003 1145 2000 1155 2000 115.6 2000

1.0E-9 — 2000 115.6 2000 115.6 2000
1.OE-10 — — 2000 115.6 2000 115.6 2000
1.0OE-11 — — 2000  115.6 2000 115.6 2000
1.OE—-12 — — 2000 115.6 2000 115.6 2000
1.OE-13 — — 2000 1157 2000 115.6 2000
1.0OE-14 — — 2000 115.2 2000 115.6 2000
1.OE-15 — — — — 2000 115.6 2000
1.OE-16 — — — — 2000 115.6 2000

which also likely delays the onset of the degeneracy of the
regular BIE for thin-beam models. The dual BIE (a) (with
regular BIE (4) collocating on the upper surfaces and
edges, and gradient BIE (5) on the lower surfaces) and dual
BIE (b) (with the linear combination (7) on all surfaces)
work extremely well until the ratio 4/L reaches 10~'* and
107'9, respectively. After i/L = 107!, the double precision
used in the code breaks down in representing the small
values. It should be pointed out that the exercise done here
is for pure investigation of the mathematical behaviors of
the regular BIE and dual BIE formulations in the extreme
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cases when the thickness of a beam approaches zero. In real
MEMS applications, i/L = 10~'% may never be practical.
The condition numbers of the BEM systems of equations
using the three BIE formulations for the above cases are
plotted in Fig. 5. As expected, the condition numbers for
the system with the regular BIE increase quickly as the
thickness of the beams decrease, which indicates that the
regular BIE is towards degeneracy for thin-beam problems.
The condition numbers for the dual BIE (a) also increase to
such a high level that the reliability of the results is in
question. This may be an indication of the poor
conditioning of the BEM equations caused by the
mismatch in the magnitudes of the coefficients from the
G kernel and those from the F kernel. The condition
numbers for the dual BIE (b) stay almost at a constant level
as the thickness decreases, reflecting the good conditioning
of the systems using the dual BIE (b) which produces a
more uniform distribution of the coefficients. For the fast
multipole BEM, good conditioning of a system is very
important in ensuring the convergence of the solutions by
iterative solvers. Thus, the dual BIE (b), that is valid for
both thick or extremely thin beam models, seems to be an
ideal candidate to be used with the fast multipole BEM.
(b) Comb-drive models using the fast multipole BEM: A
simplified comb-drive model is studied next using the
developed fast multipole BEM and compared with the
conventional BEM which uses a direct solver (LAPACK)
for solving the linear system. For the fast multipole BEM,
the numbers of terms for both moments and local
expansions are set to 15, the maximum number of elements
in a leaf to 100, and the tolerance for convergence of the
solutions to 107°. All the computations were done on a

Pentium IV laptop PC with a 2.4 GHz CPU and 1GB
RAM.

The comb-drive models are built with the basic two
parallel beam model shown in Fig. 2. The parameters used
are ¢=1, L=0.0lm, #4&=0.0002m, ¢ = 0.0003m,
d=0.0005m, V=1, C=0. Fig. 6 shows a model with
17 beams (fingers). The two support beams on the left and
right sides in Fig. 6 are not modeled in the BEM
discretization. Two hundred elements are used along the
beam length and 5 elements on each edge (with a total of
elements equal to 410 for each beam). When more beams

L +v -V

0.004
0.002
o L
=~ or
-0.002 —
-0.004 —

i 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1

0 0.002 0.004 0.006 0.008 0.01

X (m)

Fig. 6. A 2-D comb-drive model with 17 beams.

L]
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i Y
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.
1.E+12 hi
'S
1.E+11
o “~
€ 1.E+10 >
e N
5 1E+09 <
= -~
el ~
g 1.E+08 ‘*: N
1.E+07 =
~
1.E+06 b
1.E+05 \‘
1.E+04 1 k\:‘
p
o
1.E+03 27
1.E+02 '\e‘w
1.E+01

1.E-17 1.E-16 1.E-15 1.E-14 1.E-13 1.E-12 1.E-11 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

h/L

Fig. 5. Condition numbers of the systems of equations using the different BIE formulations.
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I I I I I I I I I
10000 H On beam 1(V=+1)
H=-=-=- On beam 2(V=-1)
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Fig. 7. Charge densities on the center beam 1 and beam 2 (below the
center beam) (Fig. 6).

are added into the model, the number of elements along the
beam length will be increased to 400.

Fig. 7 shows the computed charge densities on the center
beam (beam 1) with positive voltage and the beam just
below the center beam (beam 2) with negative voltage, for
the model with 17 beams shown in Fig. 6. Due to the
symmetry of the fields above and below each beam, the
charge densities on the top and bottom surfaces of each
beam are identical and thus only one field is plotted for
each beam. The charge density on the two beams are also
with the opposite sign and “anti-symmetrical”, as expected.
Fig. 8 is a plot of the charge densities on the bottom surface
(¢7) and top surface (¢ ) of the outer most (top) beam in
Fig. 6. This plot is similar to the plot in Fig. 4 for the two
parallel beam (with offset) case. It should be noted that the
fields in MEMS are much more complicated than those
that the simple parallel beam models can represent,
especially near the edges of the beams, due to the simplified
geometries used in this study. Nevertheless, the BEM code
developed in this study can handle more complicated
geometries of 2-D comb-drive models.

All the comb-drive models studied are summarized in
Table 2. The parameters for each beam and gap are the
same and the problem size is increased only by adding
more beams in the model. Due to the memory limitation,
the conventional BEM approach (with dual BIE (b)) can
only handle models with elements up to 10,000 on the PC.
The fast multipole BEM, however, can not only reduce the
memory requirement, but also run much faster compared
with the conventional BEM. Fig. 9 shows the CPU time
comparison using the conventional BEM and the fast
multipole BEM in solving these simple comb-drive models.
As expected, the fast multipole BEM with the dual BIE (b)
converges faster than the one with the regular BIE, due to
the better conditioning of the dual BIE (b) formulation.
The fast multipole BEM results converge in about 30-70
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Fig. 8. Computed charge densities on the top beam surfaces (Fig. 6).

Table 2
Comparison of the CPU time for the conventional and fast multipole
BEM

Comb-drive models CPU time (s)

Number  Elements Total Conventional Fast Fast multipole
of beams per beam DOFs BEM with multipole BEM with dual
dual BIE (b) BEM with BIE (b)
regular BIE
5 410 2050 17.7 10.0 7.4
9 410 3690 92.5 33.0 18.9
13 410 5330 2623 53.0 432
17 410 6970  569.9 64.0 43.1
21 410 8610 1067.1 76.0 53.0
25 410 10,250 1779.0 156.0 86.9
29 410 11,890 — 215.0 115.5
29 810 23,490 — 309.0 186.5
37 810 29,970 — 656.0 389.7
53 810 42,930 — 648.0 468.6
69 810 55,890 — 1421.0 918.5
85 810 68,850 — 2209.3 1236.9
125 810 101,250 — 2687.1 1979.5
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Fig. 9. CPU time for the conventional BEM and fast multipole BEM.
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iterations using the dual BIE (b) and in about 50 to more
than 100 iterations using the regular BIE.

It is evident from these preliminary studies that the dual
BIE (b) is very effective in solving MEMS problems with
thin beams and the fast multipole BEM using the dual BIE
(b) is very efficient in solving large-scale models.

5. Discussions

Three electrostatic BIE formulations for modeling
MEMS problems with thin beams are investigated, namely,
the regular BIE in Eq. (4), the dual BIE (a) using the
regular BIE on one surface of a beam and the gradient BIE
(Eq. (5)) on the other surface, and the dual BIE (b) using a
linear combination of the regular BIE and gradient BIE
(Eq. (7)) on all surfaces of a beam. It is found that the
regular BIE can handle thin beams with the thickness to
length ratio /1/L as small as 10~%, when all the integrals are
calculated analytically, while the dual BIE (a) and (b) can
handle thin beams with 4/L as small as 10~'* and 1076,
respectively. However, both regular BIE and dual BIE (a)
yield very high condition numbers for the systems of
equations, and their accuracy and reliability for beams with
very small thickness are in question. The dual BIE (b)
yields relatively small condition numbers for beams with all
the thickness studied and thus is a better candidate for
implementation with the fast multipole BEM.

The fast multipole BEM is implemented for both the
regular BIE and dual BIE (b) formulations based on
the fast multipole BEM code presented in Ref. [30]. The
treatment of the F kernel integral in gradient BIE (5) in the
fast multipole expansions, which is not provided in
Ref. [30], is also discussed. Simplified comb-drive models
with increasing numbers of the beams are studied using the
developed fast multipole BEM code. The results clearly
demonstrate the potentials of the fast multipole BEM,
especially, the one based on the dual BIE (b), for analyzing
MEMS models with thin beams in a wide range of the
thickness values.

More research needs to be done to improve the fast
multipole BEM for modeling MEMS problems. More
realistic MEMS models need to be studied to further test
the developed code. Convergence of the solutions may be
improved with better pre-conditioners. Fast multipole
BEM code for analyzing 3-D electrostatic models need to
be developed. Furthermore, coupled electro-mechanical
analysis, dynamic and nonlinear problems can also be
investigated.
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