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Abstract

A fast multipole boundary element method (BEM) is presented in this paper for large-scale analysis of two-dimensional (2-D) Stokes
flow problems based on a dual boundary integral equation (BIE) formulation. In this dual BIE formulation, a linear combination of the
conventional BIE for velocity and the hypersingular BIE for traction is employed to achieve better conditioning for the BEM systems of
equations. In both the velocity and traction BIEs, the direct formulations are used, that is, the boundary variables involved are the
velocity and traction directly. The fast multipole formulations for both the velocity BIE and traction BIE for 2-D Stokes flow problems
are presented in this paper based on the complex variable representations of the fundamental solutions. Several numerical examples are
presented to study the accuracy and efficiency of the proposed approach. The numerical results clearly demonstrate the potentials of the

developed fast multipole BEM for solving large-scale 2-D Stokes flow problems.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Stokes flow problems, which are closely related to
elastostatic problems, have been formulated with boundary
integral equations (BIEs) and solved by the boundary
element method (BEM) for decades using either direct or
indirect BIE formulations (see, e.g., Refs. [1,2]). However,
the conventional BEM used to solve Stokes flow problems
suffer the same drawbacks as in the elasticity case, that is, it
requires O(N°) operations to solve the BEM systems of
equations using direct solvers or O(N?) operations using
iterative solvers, with N being the number of equations. In
the mid of 1980s, Rokhlin and Greengard [3—5] pioneered
the innovative fast multipole method (FMM) that can be
used to accelerate the solutions of BEM equations,
promising to reduce both the CPU time and memory
requirement in the fast multipole accelerated BEM to
O(N). Some of the research on fast multipole BEM for
elasticity problems can be found in Refs. [6-18], which
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show great promises of the BEM for solving large-scale
problems. A comprehensive review of the fast multipole
BIE/BEM can be found in Ref. [19] and a tutorial in
Ref. [20].

For Stokes flow problems using the fast multipole BEM,
there have been several approaches reported in the
literature. Greengard et al. [7] developed a fast multipole
formulation for directly solving the biharmonic equations
in two-dimensional (2-D) elasticity with the Stokes flow as
a special case. They applied Sherman’s complex variable
formulation to solve the biharmonic equation and pre-
sented several interesting large-scale problems. Gomez and
Power [21] studied 2-D cavity flow governed by Stokes
equations using both direct and indirect BIEs and the fast
multipole method. They used Taylor series expansions of
the kernels in real variables directly and concluded that the
indirect BIE formulation with double layer potential offers
better conditioning of the systems of equations and thus
faster convergence with the fast multipole method.
Mammoli and Ingber [22] applied the fast multipole
BEM to study Stokes flow around cylinders in a bounded
2-D domain. They also employed direct and indirect BIEs
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with the kernels expanded using Taylor series of the real
variables. Large-scale 2-D Stokes flow models were studied
as well as the dynamic simulations of systems with large
numbers of particles. In the context of modeling micro-
electro-mechanical systems (MEMS), Ding and Ye [23]
developed a fast BEM using the precorrected-FFT
accelerated technique for computing drag forces using
3-D MEMS models with slip boundary conditions. Frangi
et al. [24-27] have conducted extensive research using the
direct BIE formulations and the fast multipole BEM for
evaluating damping forces of 3-D MEMS structures in
infinite fluid domains. When structures are assumed to be
rigid and with no slip boundary conditions, the velocity
BIE is reduced to an integral equation of the first kind,
which is not well conditioned. To facilitate faster conver-
gence of the fast multipole BEM, Frangi et al. introduced
the traction BIE, which is an integral equation of the
second kind, and when coupled with the velocity BIE, can
provide better conditioning for the BEM systems of
equations. They have applied this mixed-velocity-traction
BIE technique in modeling large-scale 3-D MEMS pro-
blems with the fast multipole BEM to accurately evaluate
the damping forces under both no slip and slip boundary
conditions [24-27].

The BIE formulations for Stokes flow problems suffer
from several “defects”, such as the eigenfunctions existing
in the BIEs that can cause nonunique solutions of these
BIEs [1,2]. Improved or complete indirect BIE formula-
tions have been proposed to overcome these difficulties as
well as to provide better conditioning for the systems of
equations (see, e.g., Refs. [21,22]). However, in indirect BIE
formulations, the boundary variables are not the physical
quantities needed and additional evaluations are required
to obtain the demanded physical quantities like velocities
and tractions on the boundary. Developing direct BIE
formulations that are free from the “defects” associated
with the BIE formulations for Stokes flow problems will be
most advantageous. Using a coupled velocity BIE and
traction BIE approach may be a promising alternative, as
have been demonstrated by the work of Frangi et al.
[24-27] for 3-D exterior Stokes flow problems. However,
this dual BIE approach has not been tested with the BIEs
for 2-D Stokes flow problems and interior domain pro-
blems, where additional difficulties arise in the solutions of
the boundary-value problems and in the BIE formulations.

Another existing issue is with the computing efficiencies
of the fast multipole method for 2-D problems. In the study
of the 2-D fast multipole BEM for elasticity problems, it is
recognized that the approach based on expansions of the
kernels in complex variables [5,7,18,20] is much more
efficient than approaches based on expansions of kernels in
real variables. This is because each term in a series of
complex variables is an analytic function, and its real and
imaginary parts are harmonic functions, which closely
resemble the behavior of the fundamental solution that is
harmonic in nature. Thus, faster convergence can be
achieved with fewer expansion terms in the fast multipole

BEM using the complex BIE formulations [5,7,18,20]. The
complex variable approach can be extended to develop a
fast multipole BEM for 2-D Stokes flow problems based on
the dual direct BIE formulation.

In this paper, a new fast multipole BEM approach is
presented for 2-D Stokes flow problems based on a direct
dual BIE formulation. First, the dual BIE formulation is
presented that involves the velocity and traction as the
boundary variables directly. The deficiencies of the CBIE
and HBIE under several special situations are discussed
and the remedy to all these difficulties using a linear
combination of the CBIE and HBIE is proposed. Then, the
fast multipole formulations for the CBIE and HBIE are
presented, with formulations for the CBIE extracted
directly from those for the 2-D elasticity case using
complex variables [18], while formulations for the HBIE
are derived by taking derivatives of the local expansions of
the CBIE using complex variables. All the moments and
related M2M, M2L and L2L translations for the HBIE
turn out to be identical to those for the CBIE and thus very
compact and efficient fast multipole BEM code can be
developed using this dual BIE formulation. Three examples
are presented and the numerical results clearly show the
effectiveness, accuracy and efficiency of the fast multipole
BEM based on the dual BIE formulation for analyzing
large-scale 2-D Stokes flow problems. Finally, discussions
are given on possible improvements of the developed fast
multipole BEM using the dual BIE formulation and its
extensions to other applications.

2. The dual BIE formulation

Consider the following boundary-value problem for a
steady-state Stokes flow problem in domain V (Fig. 1):

equilibrium : —p,; + pu;,; =0, Vx eV, (1)
mass conservation : u;,; =0, VxeV, 2)
boundary conditions 1 u; = f;, V¥x e S, and

ti=g¢g;, YxeS, 3

where u; is the velocity, p the pressure, u the coefficient of
viscosity of the fluid, f; and g, the given values of velocity u;

0 1

Fig. 1. Domain V' and boundary S.
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and traction #; on boundary S, and S, (S=S,US),
respectively. The stress ¢; in the fluid is related to the
velocity field by
ojj = —poj + ,u(ui,j +u,), Vxel 4)
and traction on § is given by f; = o;n; with n being the
outward normal of the domain (Fig. 1).

The velocity integral representation and boundary integral

equation (CBIE) can be expressed collectively as (see, e.g.,
Refs. [1,2])

cii(Xui(x) = /S[Uij(xz V() — Ti(x, y)u(y)] dS(y),
vx eV or S, (5)

where ¢; = 16; when x € S that is smooth around x, and the
integral with the 7 kernel is a Cauchy principal-value
(CPV) integral. Eq. (5) is valid for both interior and
exterior problems (assuming velocity and traction fields
vanish at the infinity for the latter). When xeV, ¢; =6y
and Eq. (5) is an integral representation of the velocity. The
two kernel functions Uy(x, y) and Tj(x, y) in Eq. (5) are
given by the following expressions for 2-D Stokes flow

problems:
1 1
lj(x y) 61] log + V,,‘V,j - 561] > (6)
1
Tij(x,y) = — —ruirytocni(y), (7
S

in which r = r(x, y) is the distance between the source point
x and field point y (Fig. 1), and r,; = 0r/0y;. The constant
term —%5,; in expression (6), which does not affect the BIE
solution, is added for the convenience in the multipole
implementation [18].

The pressure field can be represented by the following
integral [1,2]:

p(x) = /S [G,i (X, Y)ti(y) — 2uF,;(x, y)u;(y)]1dS(y),

vx eV, ®)
in which,
1 1 0G(x,
Gx.y) = 5-log (;) Foxy =g
= _ L) 9

2nr

are the fundamental solutions for 2-D potential problems.
From Eq. (8), one can find the pressure field p(x) in domain
V once the velocity and traction fields are known on
boundary S.

Taking the derivatives of Eq. (5) with xe V' (¢;; = 6;;) and
n{x) being a vector at x, applying Eq. (4) with expressions

in (6) and (7), one has the following results:
0;i(X)n;(x) = —p(X)ni(x) + ni(x)
160,90 = 25900 45
+ /S [Kii(x, ))t;(y) — Hyj(x, y)u;(y)]dS(y), VvVxe V. (10)

Noting Eq. (8) and letting x tend to S, one obtains the
following traction BIE (HBIE):

e (X)(x) = /S LK V)i(y) — Hy(%, yus(y)| dSy),

vx € S, (11)
where ¢; = 16;; assuming S is smooth around x, and
1
Kij(X, ) = — ittt (X) (12)
Hy(x,y) = %[(6;,1,,( + Oty — SE Ty

+ nir, il sk + nychyity; + 5zknj]nk(x) (13)

with n(x) being the normal at source point x (Fig. 1). In
traction BIE (11), the integral with the K kernel is a CPV
integral, while the one with the H kernel is a Hadamard
finite-part (HFP) hypersingular integral (see, e.g., Refs.
[28-30]). For exterior problems, it has been assumed that
the pressure field p(x) vanishes at infinity in the derivation
of BIE (11).

CBIE (5) and HBIE (11) with the four kernels Uy, T, K;;
and H; can be obtained from those for 2-D elast1c1ty
problems by simply setting the Poisson ratio to 0.5 in the
corresponding elasticity BIEs.

Some observations on CBIE (5) and HBIE (11) are in
order:

(a) For a Dirichlet problem where velocity is prescribed on
the entire boundary S, CBIE (5) is reduced to

/S Ui(x, y)5(y) dS(y) = bi(x), Vx €S, (14)

where b; is a known vector from the velocity field; while
HBIE (11) is reduced to

1i(x) = L Ky i) dSy) +dix), vxes,  (15)

where d; is another known vector. Eq. (14), a Helmholtz
equation of the first kind, is ill-conditioned and not
suitable for iterative solvers, while Eq. (15), a Helmholtz
equation of the second kind, can yield a system of
equations with better conditioning [1,2,21,22].
(b) Any constant pressure field p(x) = po, with u; = 0 and
= —pon;, is a solution of both Eq. (14) (for interior
and exterior problems) and Eq. (15) (for interior
problems only). That is, ¢; = —pon,; are eigenfunctions
of both Egs. (14) and (15), although corresponding to
different eigenvalues, and their solutions for the
traction field may not be unique [1,2,21,22].
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(c) HBIE has another ‘defect”, that is, an arbitrary
constant can be added to the velocity field on a closed
contour without changing HBIE (11), due to the fact
that

Hj(x,y)dS(y) =0,
Sk
for any closed contour Sy [31]. This means that one has
either nonunique solutions of the velocity on the
contour if traction is prescribed, or inaccurate evalua-
tion of this contour integral if velocity is given, when
HBIE (11) is applied alone. This deficiency with the
HBIE and its remedies have been discussed in the
context of elasticity in Refs. [32,33].

A remedy to the above-mentioned defects or difficulties
is to use CBIE (5) and HBIE (11) together in the form of a
lincar combination, which has been found to be very
effective for 3-D exterior Stokes flow problems in Refs.
[24-27], and for both 2-D/3-D interior and exterior
potential problems in Refs. [34,35].

In an operator or matrix form, CBIE (5) and HBIE (11)
can be written as

lu+Tu=Ut and —It+Kt=Hu,

respectively. A dual BIE formulation using a linear
combination of CBIE (5) and HBIE (11) can be written as

(Ju+ Tu — Ut) + B(—4t + Kt — Hu) = 0, (16)

where f is the coupling constant. In this study, a positive f§
(e.g., f = 1) has been found to work quite well for all the
cases. More discussions on the selections of f§ can be found
in Refs. [34-39] for other cases. Dual BIE formulations
have been found to be very effective and efficient for
solving acoustic wave, elastic wave, potential and electro-
static problems [34-39]. Dual BIE formulations are
especially beneficial to the fast multipole BEM since they
provide better conditioning for the BEM systems of
equations and thus can facilitate faster convergence when
using the iterative solvers.

3. The fast multipole BEM using the dual BIE

The fast multipole algorithms for solving for 2-D
potential and elasticity problems have been described in
detail in Refs. [18,20]. As a similar case to 2-D elasticity,
the 2-D Stokes flow case can be handled using the same
algorithms as in 2-D elasticity. The only task is to derive
the required expansions, moments and translations. For
CBIE (5), the results are extracted from those already
available for the 2-D elasticity case given in Ref. [18]. For
HBIE (10), the results are derived and provided in this
section.

In Ref. [18], it is shown that the two integrals in
the CBIE for 2-D elasticity can be represented in com-
plex variables readily if the fundamental solution Ui (X, y)
and Ty(x, y) are written in complex forms using the results

in 2-D elasticity. By setting the Poisson ratio to 0.5 in
these results, we obtain the corresponding expressions
for 2-D Stokes flow problems. For example, the first
integral in CBIE (5) can be written in the following

complex form (cf., Eq. (10) in Ref. [18] for 2-D
elasticity):
Dy(z0) = [41(x) + 142(x)],
- { [ v y)z;(y)dsw)J
S
+i| [ Uyt asw]
S
_ ﬁ /S (G0, 91(2) + Gz, 1(2)
~(z0 = G G0, DIE)] dSE), a7

where i=+/—1, () indicates the complex conjugate,
t=1t,+it, the complex traction, zo( = x;+ix,) and
z( =y, +1iy,) represent x and vy, respectively, G(zg, z) =
—log(zp—z) the Green’s function (in complex form) for 2-D
potential problems [5,20], and G'(zg, z)=0G/0zo. The
integral in Eq. (17) can be used to evaluate readily the U
kernel integral in CBIE (5).

Similarly, the complex representation for the second
integral with the T kernel in CBIE (5) can be written as
follows (cf., Eq. (32) in Ref. [18] for 2-D elasticity):

Dy(z0) = [41(X) +142(x)], = {/S T;(x, y)u;(y) dS(Y)J

i { [ Ty dS(y)J

_ 1 /S {G’(zo,z)n(z)u(z)

4n
~ (20— )G 0, 2) ) )
+G Go, @) + n@u()] fdS@). (18)

in which ¥ =u;+iu, and n=n;+in, are the complex
velocity and normal, respectively.

Applying the relation between the traction and velocity
in complex notation, we can show that the first integral
with the K kernel in HBIE (11) can be written in the
following complex form:

Fi(z0) = [F1(x) +1F2(x)], = {/S Ky (x, y)4(y) dS(Y)J

+i { /S Koi(x,y)1(y) dS(Y)J

& [{[e@a0+ TGz e
+ [ml@) —(20—2)

X G, z)t(z)] n(zo)}dS(z). (19)
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Similarly, the second integral with the H kernel in HBIE
(11) can be written as

Fu(z0) = [F1(x) +iF2(x)],

_ { /S Hoy(x y)u(y) dS(y>J

+i { /S Hoi(x, y)uy(y) dS(y)J

- % /S { [G”(ZO, n(2)u(z)
+G G0, 2 M u(E) (o)
+ [0, ) (02) ) + nDu(z)
—(z0 — )G (z0,2) 1(2) u(z)] n(zo)} dsG).  (0)

It is straightforward to show that expressions (19) and
(20) yield the first and second integrals in HBIE (11),
respectively, by simply extracting the real and imaginary
parts of the right-hand sides of Egs. (19) and (20).

In the following, we first present the multipole expansions,
local expansions and their translations related to Egs. (17)
and (18) in the fast multipole BEM for CBIE (5). Then we
discuss the same related to Eqs. (19) and (20) for HBIE (11).

3.1. Multipole expansion (moments) for the U kernel
integral

Assuming z, is a point close to the integration point z
(Fig. 2), that is, |z—z | <|z¢9—z.|, we have [18]

G(z0,2) = > Ok(z0 — 2)i(z — 2o). 1)
k=0

where the two auxiliary functions are defined by

k

L(z)=-

P for k=0, (22)

(k —1)!

Oy(z) = —log(z) andO(z) = for k=1.

k7

(23)

0 1

Fig. 2. Complex notation and the related points for fast multipole
expansions.

Substituting (21) in (17), we obtain the following multipole
expansion for D/zy) (cf., Eq. (24) in Ref. [18] for 2-D elasticity):

Dy(zp) = > Ok(zo — z)Mi(z.)
k=0

1
8mu

+20 Y Okn(Go — 2 Mi(z,)
k=0

+ Z Oy(zo — Zc)Nk(Zc)‘| 5 (24)
k=0
where the first set of moments about z, are [18]:
Mi(z.) =/ Ii(z — z)H(z)dS(z), for k=0 (25)
So

with S, being a subset of S that is far away from the source
point, and the second set of moments are [18]:

No = [5, 1) dS(z);

Ni(ze) = fSo [Ik(z —zJ)Hz) = Ij—1(z — ZC)ZTZ)] dS(z),
for k=1.

(26)

3.2. Moment-to-moment (M2M) translation

If point z. is moved to a new location z. (Fig. 2), we have
(18]

k
Mi(zy) = Z Iii(ze — z)My(2.), for k=0. (27)
=0
Similarly,
k e —
Ni(ze) =Y Tii(ze = 20)Nilz,), for k=0. (28)
=0

These are the M2 M translations for the moments when z,.
is moved to z.. Note that these translation coefficients are
symmetrical for the two sets of moments (/,_; and
conjugate of I,_;) and coefficients /,_; are exactly the same
as used in the 2-D potential case [5,20].

3.3. Local expansion and moment-to-local (M2L)
translation

If z; is a point close to point z, (Fig. 2), that is,
|zo—z7| <€|z.—zz|. Expanding D,(zy) in (24) about zy = z,
using Taylor series expansion, we have the following local
expansion (cf., Eq. (27) in Ref. [18]):

Dy(z0) = > Loz — =1)
=0

1
8mu

o0
—z0 > Liz0)I1-1(o — 21)
1=

+ Z Ki(zp)Ii(z0 — ZL)‘| , (29)
=0
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where the coefficients are given by the following M2L
translations [18]:

Lizr) = (=1 Oriler — 2)M(z),  for 1>0, (30)
k=0

Kiz1) = (=" Oraer = 20Nw(zo),  for 120. (31)
k=0

3.4. Local-to-local (L2L) translation

If the point for the local expansion is moved from z; to
zp, (Fig. 2), the new local expansion coefficients are given
by the following L2L translations [18]:

Lizp) =Y In-i(zy — 20)Li(z),  for >0, (32)

m=[

Ki(zpy) = Zlm—l(zL’ —z1)K(zp), for [>0. (33)

m=I

3.5. Expansions for the T kernel integral

Through a similar procedure as used for the U
kernel integrals in (17), the multipole expansion of (18)
can be written as (cf., Eq. (33) in Ref. [18] for 2-D
elasticity):

1
Du(ZO) = E

Z Oi(zo — ZU)Mk(Z(,)
k=1

o0 _
+20 ) Opq1(z0 — ze)Mi(z.)
=1

o0
+> Oz — zc)zvk(ze)] , (34)
k=1
where the two sets of moments are:

Mi(ze) =/S Ii_1(z — z)n(z2)u(z) dS(z), for k=1; (395)

1 = g, [0 + n@u(2)] dS():
Ni(z) = Js, {Ti 1z = z) [n(2)u(2) + n(2)u(z)]
—Iyo(z — zc)zn(z)u(z)} dS(z), for

k>2.
(36)

These moments are similar to those for the U kernel
integrals. It can be shown that the M2M, M2L and L2L
translations remain the same for the T kernel integrals,
except for the fact that My = Ny = 0. In fact, the moments
M, and M, will be combined, as well as moments N, and
Ny, so that only two sets of moments are involved in the
M2M and M2L translations. The local expansion for

Du(ZO) is
Dy(z0) = % > L=z — z1)
=0
— 2 Z Li(zp)1-1(z0 — z1)
=1
+ Z Ki(zp)Ii(z0 — ZL)‘| ) (37)
=0

where the coefficients L(z;) and Kfz;) are gi~ven by
Egs. (30) and (31) with M, being replaced by My, and
N by Ny, respectively.

3.6. Expansions for the HBIE

To derive the multipole expansions and local expansions
for HBIE (11), specifically, for its two integrals in complex
forms (19) and (20), one can simply take the derivatives of
the local expansions for the two integrals in CBIE, that is,
Egs. (29) and (37), respectively, and then invoke the
constitutive relation, that is, Eq. (4) written in the complex
form. The result of the local expansion for the first integral
F/(zp) in (19) for the HBIE is

1
Fi(zo) = E{

+>  LinGol(zo — ZL)‘| n(zo)
=0

o)
> Lin(Golizo — 21)
1=0

+ | =20 LiiGOT1-1(zo — 21)
1=
+> Kii(zoTi(z0 — ZL)] ”(Zo)}’ (3%)
=0

in which, the expansion coefficients L(z;) and K{(z;) are
given by the same M2L translations in (30) and (31),
respectively. That is, the same sets of moments M) and Ny
used for D,(zq) are used for Fj(zy) directly.

Similarly, it can be shown that the local expansion for
the second integral F,(zo) in (20) for the HBIE is

Fu(ZO) = %{

+ Z Ly (zp)(zo — ZL)‘| n(zo)
=0

o0
> Lin(olizo — 21)
=0

+ =20 Y LiniGOT1(zo — 21)
=1
+> Koz — zL)] n(ZO)}, (39)
=0

in which L(z;) and K{(z;) are given by Egs. (30) and (31)
with M being replaced by M, and Ny by Ny, respectively.
Again, the same sets of moments M} and Nj used for
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D, (zo) are used for F,(zy), and all the M2M, M2L and L2L
translations for the HBIE remain the same as used for the
CBIE.

The details of the fast multipole algorithms for solving
2-D Stokes problems are similar to the ones for 2-D
potential and elasticity problems, which have been
described in details in Refs. [18,20]. Pre-conditioners for
the fast multipole BEM are crucial for its convergence and
computing efficiency. In this study, the block diagonal
preconditioner is employed, which is formed on each leaf
using direct evaluations of the kernels on the elements
within that leaf. When the problem size is large, the
estimated cost of the entire process is O(N) with N being
the number of equations, if the number of terms in the
multipole expansions and the number of elements in a leaf
are kept constant (see Ref. [19] for an estimate).

In this study, we employ constant boundary elements
(straight line segment with one node) to discretize the BIEs.
All the moments are evaluated analytically, as well as
the integrations of the kernels in the near-field direct
evaluations.

4. Numerical examples

We present three numerical examples to demonstrate the
accuracy and efficiency of the new fast multipole BEM for
2-D Stokes flow problems using the dual BIE formulation.
All the computations are done on a Pentium IV laptop PC
with a 2.4 GHz CPU and 1 GB RAM. In all the examples,
the number of terms for both multipole and local
expansions are set to 20, the maximum number of elements
in a leaf to 100, and the coupling constant f =1 for the
dual BIE (CHBIE) formulation.

4.1. Flow due to the rotation of a circular cylinder

The flow in an infinite 2-D medium due to a rotating
circular cylinder is considered first (Fig. 3). The radius of
the cylinder is @ and the angular velocity is Q. Solution of
this problem exists [40], that is, in the polar coordinate
system, we have

u(r,0) = 0, up(r,0) = Qa*/r and a,9(r,0) = —2uQa* /r*
(40)

which can be used to verify the BEM solutions. The
velocity is specified on the boundary using the above results
and the tractions are sought using the BEM. For the fast
multipole BEM solutions, the tolerance for convergence is
set to 107°.

Table 1 shows the results of the tractions at the
boundary computed by the fast multipole BEM using
both the CBIE and CHBIE formulations (HBIE cannot
provide solutions in this case due to defect (¢c) mentioned
in Section 2). Although both BIE formulations give results
of comparable accuracies, the CHBIE converges much
faster than the CBIE, as indicated by the number of

r

et

Fig. 3. A rotating cylinder in an infinite fluid.

Table 1
Traction ¢, at (@, 0) and numbers of iterations used in fast multipole BEM

DOFs t, (x uQa) Number of iterations
CBIE CHBIE CBIE CHBIE
80 1.9999 1.9891 16 7
160 2.0003 1.9936 18 7
320 2.0054 1.9965 13 7
640 2.0028 1.9981 13 4
1280 2.0011 1.9990 14 4
2560 2.0005 1.9995 16 4
5120 1.9997 1.9998 21 4
10,240 1.9997 1.9999 28 4
20,480 2.0007 1.9999 32 4
Exact solution 2.0000

iterations used, which are also listed in Table 1. Fig. 4
is a plot of the traction components on the boundary of
the cylinder with 40 clements and using CHBIE. Fig. 5
shows the velocity computed at points inside the fluid
domain using Eq. (5) with the same mesh and the CHBIE.
Both results demonstrate that the fast multipole BEM
results are quite accurate with only 40 constant elements.

The CPU times used for the fast multipole BEM based
on the CBIE and CHBIE approaches are plotted in Fig. 6,
which shows significant advantage of the CHBIE formula-
tion than the CBIE formulation. For example, for the
model with 10,240 eclements (DOFs = 20,480), the fast
multipole BEM with CHBIE used about 17s of CPU time,
while the BEM with the CBIE used about 92s, which is
about four times slower. High condition numbers are
observed for the CBIE and very low condition numbers for
the CHBIE with a direct solver, which is consistent with the
solution efficiency with the iterative solver.

4.2. Shear flow between two parallel plates

The flow between two parallel plates (Fig. 7) is studied
next using the CBIE, HBIE and CHBIE formulations. The
top plate is moving with a constant speed v, in the
x-direction and no slip condition is assumed between
the plates and fluid. The analytical solution for this
problem is

uy(x,y) =voy/h, u,=0 and o, =0,=0, g, = pvo/h.
(41)
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The purpose of this study is to investigate the behaviors
of the BEM solutions as the ratio //L approaches zero, that
is, when the fluid domain becomes a narrow channel. The
narrow spaces between two fingers of an MEMS comb-
drive device closely resemble the configuration studied in
this example with small ratios of //L.

Mixed boundary conditions are used in this example so
that all three BIE formulations, that is, CBIE (5), HBIE
(11) and the CHBIE (16), can be tested. For the lower
boundary, zero velocities are specified, while for the upper
boundary, velocities are given as u, = vy and u, = 0. For

the two vertical boundaries, tractions are given as ¢, = 0,
t, = pvo/h at x = L; and t, =0, t, = —pve/h at x =0. The
tolerance for convergence in the fast multipole BEM is also
set to 107% in this case.

Table 2 shows the dimensions, BEM discretizations,
computed tractions at the mid-point of the lower bound-
ary, and numbers of iterations used in the fast multipole
BEM solutions with the three BIE formulations. It is
observed that as the ratio of //L becomes smaller, more
iterations are needed for the CBIE formulation, while
about the same numbers of iterations are needed for the
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HBIE and CHBIE formulations. These results indicate the
poor conditioning of the CBIE formulation, while good
and improved conditionings of the HBIE and CHBIE
formulations, respectively. Most interesting is the fact that
even at h/L =107%, all three BIE formulations can still
provide reasonably good results of the tractions. The
results by the HBIE and CHBIE are slightly less accurate
than those by the CBIE at small /#/L, which may be caused
by the extremely small elements on the two small vertical
edges. Recall that for 2-D problems, the finite-part of the
hypersingular integral is proportional to 1/R with R being
the element length here. If R is very small, as is tested in
this case, 1/R can be very large and cause numerical errors
in the BEM systems of equations. In fact, the BEM code
fails when the ratio 4/L is smaller than 107° for this
example, due to the existence of the hypersingular kernel
H. This is different from the results reported in Ref. [34] for
electrostatic MEMS problems, where the ratio i/L of a
beam can reach 107'° for the dual BIE formulation that
does not have the hypersingular kernel.

This example demonstrates that the dual BIE formula-
tion can facilitate fast convergence for the fast multipole
BEM even when the domain of consideration is extremely

thin. This is consistent with the conclusions with the dual
BIE approach for fast multipole BEM in the context of
electrostatic analysis of MEMS models [34,35].

4.3. Flow through a channel with many cylinders

We next tackle interior Dirichlet problem, that is, Stokes
flows through a channel placed with one or multiple
cylinders. The dimensions of the channel are shown in
Fig. 8. At the inlet of the channel (x = 0), the flow has a
parabolic velocity profile:

ux(0,y) = 4vo(1 — y/h)y/h and uy(0,y) = 0, (42)

where vy is the maximum value of the velocity. At the outlet
of the channel (x = L), the same velocity profile is assumed
(Fig. 8), that is, the flow is assumed to have recovered from
the disturbances by the cylinder(s) placed in the middle
section of the channel. On the upper and lower boundaries
and all cylinder boundaries, no slip boundary conditions
are assumed. For this test, the tolerance for convergence
for the GMRES solver is set to 107°.

First, the case with one circular cylinder placed in the
center of the channel is studied, with L = 2h and a = 0.1A.
Fig. 9 shows the velocity vector plot within the fluid
obtained by using the CHBIE. There are about 800 points
distributed evenly inside the domain where the velocity is
evaluated using integral representation in Eq. (5) after the
tractions are obtained from the BEM solutions. Table 3
shows the total fluid force applied on the cylinder and
evaluated by integrating the obtained traction field on the
boundary of the cylinder (assuming a unit depth). There
are 600 elements on the outer boundary and the number of
elements on the cylinder increases. Both CBIE and CHBIE
are used and the results for the total force on the cylinder
are very stable with the CBIE, while those with the CHBIE
increase slowly to reach a stable value. The errors with the
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Table 2
Comparison of the three BIE formulations for the shear flow problem

h/L Number of Traction ¢, ( x pve/h) at (L/2, 0)

Number of iterations

elements on

edges Land i CBIE HBIE CHBIE CBIE HBIE CHBIE
1.0E+00 100/100 —0.99980 —1.00135 —0.99961 15 17 16
1.0E-01 100/20 —0.99998 —1.00264 —1.00185 25 21 21
1.0E—02 100/10 —1.00000 —1.00027 —1.00021 73 68 69
1.0E-03 100/5 —1.00000 —0.99985 —0.99988 142 67 67
1.0E—04 100/3 —1.00000 —0.99931 —0.99935 185 65 94
1.0E—05 100/2 —0.99998 —0.99943 —0.99514 227 49 70
1.0E—06 100/1 —0.99979 —0.99322 —0.98546 298 40 54
Exact solution —1.00000
y discussed in Ref. [22]. Fig. 10(c) shows a larger model with
B 13 x 13 elliptic cylinders packed evenly in the middle
= - section of the channel. The model has 103,000 DOFs and
[—» —» .
. . both CBIE and CHBIE are applied. The numbers of
. ) iterations increase dramatically for this large model. CBIE
— — used 248 iterations (9130s CPU time), while CHBIE used
h v, O 521, i v : ) ( . ).
- e 168 iterations (6631s CPU time). Again, the advantage of
= e the CHBIE formulation with the fast multipole BEM is
[ 2a — evident.
[—' —
; x 5. Discussions

Fig. 8. Channel flow around a cylinder.

CHBIE may be due to the finite-part integrals in the HBIE
on curved boundaries computed with constant elements
which can introduce numerical errors (see also Ref. [35] for
3-D potential case). It is also observed that the condition
numbers of the CBIE and CHBIE equations for this
interior problem are high, although the fast multipole
BEM can solve the problem using both BIEs. As shown in
Table 3, the number of iterations with the CBIE increases
as the model size increases, while numbers of iterations
with the CHBIE are almost constant and only about one
half to one quarter of those for the CBIE.

Next, the models with multiple elliptic cylinders placed
in the middle section of a channel with L = 34 are studied.
These models are motivated by the examples presented by
Greengard et al. in Ref. [7], with different geometries,
boundary conditions and numbers of elements. Fig. 10(a)
shows the velocity plot for a 5 x 5 array of elliptic cylinders
with a uniform distribution, while Fig. 10(b) shows the
velocity field with a random distribution, both using
CHBIE with 16,600 DOFs. For the uniform distribution,
59 iterations are used (381s CPU time), while for the
random distribution, 82 iterations are used (491s CPU
time). It is observed that when more cylinders are placed in
the same space or when cylinders are distributed randomly,
the iteration numbers for the BEM solutions will increase,
due to the intensified interactions between the cylinders as

A new fast multipole BEM for solving large-scale 2-D
Stokes flow problems is presented in this paper based on a
dual direct BIE formulation. The dual BIE approach, using
a linear combination of the CBIE and HBIE, can
significantly improve the conditioning of the BEM systems
of equations and thus can facilitate faster convergence
when the fast multipole BEM is applied. The dual BIE also
provides better conditioning for analyzing problems with
narrow domains or thin features. The fast multipole
formulations are presented for both CBIE and HBIE for
the 2-D Stokes flow problems. These fast multipole
formulations are based on the complex variable approach
that yields very compact results. For the HBIE, local
expansions can be obtained by directly taking derivatives
of the local expansions for the CBIE using the complex
notation. Thus the same moments and all M2M, M2L and
L2L translations as used for the CBIE can be applied for
the HBIE. Three numerical examples are presented that
clearly demonstrate the accuracy and efficiency of the
developed fast multipole BEM with the dual BIE formula-
tion for solving large-scale 2-D Stokes flow problems.

The due BIE formulation proposed in this paper may be
improved by the techniques used in Refs. [1,2,21,22] to
form complete indirect BIE formulations in order to obtain
equations with better conditioning. The fast multipole
BEM developed in this paper can also be applied readily to
other indirect BIE formulations [21,22]. To improve the
accuracy and efficiency of the fast multipole BEM for
solving large-scale models, constant elements can be
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replaced with higher-order elements (such as linear and
quadratic elements). This will be especially beneficial to the
HBIE since the finite-part integrals can be evaluated more
accurately on curved boundaries with higher-order ele-
ments than with the constant elements as used in this study.
Parallel computing with the fast multipole BEM [21,22,41]
can also be employed to further improve the computational
efficiencies. Field evaluations inside the domain, for which
direct evaluation is used in this study, can be performed
with the fast multipole BEM as well [10].

The developed dual BIE approach together with the
efficient fast multipole BEM can be extended to study other
2-D as well as 3-D Stokes flow problems, such as
calculating the damping forces in MEMS [24-2742],
problems with slip boundary conditions or Stokes flows
interacting with deformable bodies [40,43,44]. Quasi-
dynamic analysis of particles in Stokes flows is also
possible using the developed fast multipole solver for fast
evaluation of the solution in each time step [22]. Combin-
ing the Stokes fast multipole BEM code with the one for
elasticity problems to study coupled fluid—structure inter-
action problems is also possible and will be an interesting
research topic for applications in analyzing MEMS devices
and biological systems.
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