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a b s t r a c t

A new adaptive fast multipole boundary element method (BEM) for solving 3-D half-space acoustic

wave problems is presented in this paper. The half-space Green’s function is employed explicitly in the

boundary integral equation (BIE) formulation so that a tree structure of the boundary elements only for

the boundaries of the real domain need to be applied, instead of using a tree structure that contains

both the real domain and its mirror image. This procedure simplifies the implementation of the

adaptive fast multipole BEM and reduces the CPU time and memory storage by about a half for large-

scale half-space problems. An improved adaptive fast multipole BEM is presented for the half-space

acoustic wave problems, based on the one developed recently for the full-space problems. This new fast

multipole BEM is validated using several simple half-space models first, and then applied to model 3-D

sound barriers and a large-scale windmill model with five turbines. The largest BEM model with 557470

elements was solved in about an hour on a desktop PC. The accuracy and efficiency of the BEM results

clearly show the potential of the adaptive fast multipole BEM for solving large-scale half-space acoustic

wave problems that are of practical significance.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary element method (BEM) is an efficient tool for
solving exterior acoustic wave problems due to its features of
boundary discretization and automatic satisfaction of the Som-
merfeld radiation condition at infinity. When dealing with half-
space problems, the so called half-space Green’s function [1] can
be applied by adding the source solution at the image point to the
original full-space Green’s function. Using this half-space Green’s
function, the discretization of the rigid infinite plane is removed
and only the boundaries of the structure need to be discretized.
All these advantages make the BEM an attractive candidate for
analyzing half-space acoustic problems.

The reduction of operation counts for the BEM has been
achieved by adopting the fast multipole method (FMM) [2,3] to
perform the matrix–vector multiplication with an iterative solver
(e.g., GMRES). Many fast multipole BEM (FMBEM) approaches for
modeling acoustic problems in the infinite domain have been
reported in the literature (see Refs. [4–10], a review in [11] and a
book in [12]). Although the FMM algorithm for full-space
Helmholtz equation has been covered extensively in the literature,
ll rights reserved.

+1513 556 3390.
the application of the FMBEM to 3-D half-space wave problems is
relatively new.

The FMBEM for full-space acoustic problems can be applied in
solving the half-space problems by simply using the mirror image
technique. However, this approach comes with a penalty. When
using the FMBEM to solve a full-space problem, a hierarchical tree
of boxes is used to group all elements on the structure. While in
solving a half-space problem using the full-space FMBEM, both
the structure above the infinite plane and its mirror image below
the infinite plane need to be discretized. Therefore, a larger
hierarchical tree of boxes is required to group all nodes and their
mirror image points in a naı̈ve manner. The situation becomes
worse as the distance between the structure and the infinite plane
increases, leading to an even larger tree structure. This deficiency
in using the full-space FMBEM for solving half-space problems has
been shown in Ref. [13] and will be demonstrated again in this
paper.

In Ref. [13], Yasuda and Sakuma proposed an efficient
technique for solving 3-D sound field with plane symmetry using
the fast multipole BEM. In their approach to plane symmetry
problems, the half-space Green’s function is not employed in the
boundary integral equation (BIE) formulation explicitly. Instead,
the original full-space Green’s function is used in the BIE and the
full-space BEM is applied to the real domain and its mirror image
domain. The relations among the matrices due to the symmetry of
the BEM models are employed to save the computations. Their

www.sciencedirect.com/science/journal/eabe
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Fig. 1. M2M, M2L, L2L translation in half-space.
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method is applicable to problems that have one, two, or three
symmetrical planes, and is therefore not limited to half-space
problems. Using this method, the CPU time and memory size can
be cut in half for problems with one symmetry plane. The largest
symmetrical BEM model solved in Ref. [13] has 49152 DOFs
(degrees of freedom) for an interior domain with one symmetry
plane.

In the present study, the adaptive FMBEM approach of Cheng
et al. [14] and Shen and Liu [10,15] is extended to solve half-space
acoustic wave problems, in which only the elements on the
structure are grouped in the tree structure. The half-space Green’s
function is applied explicitly in the BIE formulation for half-space
acoustic problems. Using the half-space Green’s function, the
implementation of half-space FMEBM is simplified, where only
the local expansion is different from that for the full-space
FMBEM. The total CPU time and memory storage are also reduced
by about a half for large half-space BEM models, the same as
concluded in Ref. [13] based on utilizing the symmetry features of
the discretized BEM equations. Large half-space acoustic BEM
models with the number of DOFs equal to 557470 are solved with
the developed FMBEM on a PC in about an hour with the tolerance
for convergence set at 10�5 using the GMRES solver. This clearly
demonstrates the efficiency and potential of the developed fast
multipole BEM for solving large-scale half-space acoustic pro-
blems.

The paper is organized as follows: Section 2 reviews the basic
FMBEM formulation for half-space problems. Section 3 introduces
the adaptive FMBEM algorithm, where the same hierarchical tree
used in the full-space domain is used. Section 4 shows the
numerical results and comparisons between the half-space and
full-space FMBEM. Discussions on further improvement of the
method are presented in Section 5 to conclude the paper.
2. Formulation of the FMBEM for half-space acoustic problems

The direct boundary integral equation for the Helmholtz
equation which governs the acoustic wave problems can be
written as

cðxÞjðxÞ ¼
Z
G
½Gðx; yÞqðyÞ � Fðx; yÞjðyÞ�dGðyÞ þjIðxÞ 8x 2 G, (1)

where j is the acoustic pressure, q ¼ qj/qn, jI represents a
typical incident wave (which should satisfy the half-space
condition), n the outward normal, and the coefficient c is 1

2 if the
surface G is smooth around source point x. For half-space
problems with a rigid infinite symmetry plane (where the velocity
is zero), the Green’s function is [1]

Gðx;yÞ � Gðx;x0; yÞ ¼
eikjx�yj

4pjx� yj
þ

eikjx0�yj

4pjx0 � yj
, (2)

where x0 is the mirror image point of the source point x (Fig. 1), y
the field point, k the wavenumber and i ¼

ffiffiffiffiffiffiffi
�1
p

. For a soft infinite
symmetry plane (where the pressure is zero), the plus sign in the
above expression should be changed to a minus sign.

The boundary conditions are:

jðxÞ ¼ j̄ðxÞ; 8x 2 G1;

qðxÞ ¼ q̄ðxÞ; 8x 2 G2;

(
(3)

where G ¼ G1

S
G2, and the barred quantities indicate given values

on the boundary.
Discretizing the boundary G using N (e.g., constant) surface

elements leads to the following system of equations (e.g., for
radiation problems):

XN

j¼1

f ijjj ¼
XN

j¼1

gijqj for node i ¼ 1;2; . . . ;N, (4)

where

gij ¼

Z
DGj

Gðxi;x
0
i;yÞdGðyÞ f ij ¼

Z
DGj

Fðxi;x
0
i; yÞdGðyÞ þ 1

2dij, (5)

in which DGj represents element j (in the case of using constant
elements).

Re-arranging each term in Eq. (4), that is, moving the unknown
terms to the left-hand side and known terms to the right-hand
side, we can write Eq. (4) as

a11 a12 . . . a1N

a21 a22 � � � a2N

..

. ..
. . .

. ..
.

aN1 aN2 � � � aNN

2
66664

3
77775

l1

l2

..

.

lN

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

b1

b2

..

.

bN

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; or Ak ¼ b; (6)

where A is the system matrix, k the unknown vector, b the
product of known boundary value vector and corresponding
coefficient matrix.

To solve Eq. (6) using iterative solver, Ak is calculated in each
iteration step. Conventional way to calculate the Ak takes O(N2)
operation count, as well as O(N2) memory storage. Using the FMM
will reduce the operation count from O(N2) to O(N), and memory
size from O(N2) to O(N). In the following, the basic FMM formulas
for the Helmholtz equation are reviewed.

As depicted in Fig. 1, the fundamental solution of the half-space
Green’s function G represents the interaction between the source
point x and field point y, and the interaction between mirror point
x0 and field point y. It can be expressed as a multipole expansion

G ¼
ik

4p
X1
n¼0

ð2nþ 1Þ
Xn

m¼�n

Ī
m
n ðk; y; ycÞ½O

m
n ðk;x;ycÞ

þ Om
n ðk;x

0; ycÞ�; jy � ycjojx� ycj, (7)

where the inner function In
m is in the form

Im
n ðk;y;ycÞ ¼ jnðkjy � ycjÞY

m
n

y � yc

jy � ycj

� �
, (8)
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the outer function On
m is defined by

Om
n ðk;x; ycÞ ¼ hð1Þn ðkjx� ycjÞY

m
n

x� yc

jx� ycj

� �
, (9)

and jn is the spherical Bessel function, hð1Þn the spherical
Hankel function of the first kind and Ym

n the spherical harmonics
[16].

For integrals on element j which is far away from the source
point x (|y�yc|o|x�yc|), the integrations in Eq. (5) can then be
written as the multipole expansions around yc as follows:Z
DGj

Gðxi;x
0
i; yÞqj dGðyÞ

¼
ik

4p
X1
n¼0

ð2nþ 1Þ
Xn

m¼�n

Mm
n;jðk; ycÞ½O

m
n ðk;xi; ycÞ þ Om

n ðk;x
0
i; ycÞ�;Z

DGj

@Gðxi;x
0
i; yÞ

@nðyÞ
jj dGðyÞ

¼
ik

4p
X1
n¼0

ð2nþ 1Þ
Xn

m¼�n

~M
m

n;jðk; ycÞ½O
m
n ðk;xi; ycÞ þ Om

n ðk;x
0
i; ycÞ�; (10)

where the multipole moments are defined as

Mm
n;jðk; ycÞ ¼

Z
DGj

Ī
m
n ðk; y; ycÞqj dGðyÞ;

~M
m

n;jðk; ycÞ ¼

Z
DGj

Ī
m
n ðk; y; ycÞ

@nðyÞ
jj dGðyÞ: (11)

Information of a group of element Gj that are close to yc can be
added up and stored in one set of multipole moments Mm

n (k,yc)
given by

Mm
n ðk;ycÞ ¼

X
j

Mm
n;jðk; ycÞ, (12)

where j is the number of an element.
The multipole moment center can be moved from yc to yc0

using the moment-to-moment (M2M) translation, if
|y�yc0|o|x�yc0|

Mm
n ðk; yc0 Þ ¼

X1
n0¼0

Xn0

m0¼�n0

Xnþn0

l¼jn�n0 j
nþn0�l:even

ð2n0 þ 1Þð�1Þm
0

Wn;n0 ;m;m0 ;lI
�m�m0

l ðk; yc ; yc0 Þ

�M�m0

n0 ðk; ycÞ, (13)

where Wn,n0 ,m,m0 ,l is calculated using the following formula:

Wn;n0 ;m;m0 ;l ¼ ð2lþ 1Þin0�nþl n n0 l

0 0 0

� �
n n0 l

m m0 �m�m0

� �
,

and
� � �

� � �

� �
denotes the Wigner 3j symbol.

The expansion center can also be moved from yc to xc through
multipole-to-local translation (M2L), given |x�xc|o|y�xc|
and |y�yc|o|x�yc|. The resulting expansion is called local
expansion and the local expansion coefficients Ln

m(k,xc) can be
expressed as

Lm
n ðk;xcÞ ¼

X1
n0¼0

Xn0

m0¼�n0

Xnþn0

l¼jn�n0 j
nþn0�l:even

ð2n0 þ 1ÞWn0 ;n;m0 ;m;l
~O
�m�m0

l

� ðk;xc ; ycÞM
m0

n0 ðk; ycÞ, (14)

where ~O
m

n ðk;x; yÞ ¼ hð1Þn ðkjx� yjÞȲ
m
n ðx� yÞ. Similarly, moving the

multipole expansion center from yc to x0c, which is the mirror
image point of xc, will have another set of local expansion
coefficients

Lm
n ðk;x

0
cÞ ¼

X1
n0¼0

Xn0

m0¼�n0

Xnþn0

l¼jn�n0 j
nþn0�l:even

ð2n0 þ 1ÞWn0 ;n;m0 ;m;l
~O
�m�m0

l

� ðk;x0c ; ycÞM
m0

n0 ðk; ycÞ. (15)
The local expansion center xc (x0c) can be moved to xc0 (x0c0)
using local-to-local translation (L2L), given |x�xc0|o|y�xc0|

Lm
n ðk;xc0 Þ ¼

X1
n0¼0

Xn0

m0¼�n0

Xnþn0

l¼jn�n0 j
nþn0�l:even

ð2n0 þ 1Þð�1ÞmWn0 ;n;m0 ;�m;lI
m�m0

l

� ðk;xc0 ;xcÞL
m0

n0 ðk;xcÞ,

Lm
n ðk;x

0
c0 Þ ¼

X1
n0¼0

Xn0

m0¼�n0

Xnþn0

l¼jn�n0 j
nþn0�l:even

ð2n0 þ 1Þð�1ÞmWn0 ;n;m0 ;�m;lI
m�m0

l

� ðk;x0c0 ;x
0
cÞL

m0

n0 ðk;x
0
cÞ. (16)

M2M, M2L, L2L translations are depicted in Fig. 1.
Finally, for a group of field points yj that are far away from the

source point xi, gijqj or fijjj can be expressed by the following local
expansion in terms of the local coefficients which are functions of
xc, x0c, xi, x0 i and k:

gijqj or f ijjj ¼
ik

4p
X1
n¼0

ð2nþ 1Þ
Xn

m¼�n

½Lm
n ðk;xcÞĪ

m
n ðk;xi;xcÞ

þ Lm
n ðk;x

0
cÞĪ

m
n ðk;x

0
i;x
0
cÞ�. (17)

From the above equation, we can see that there are two sets of
local coefficients. Lm

n (k,xc) is for the real domain and Lm
n (k,x0c) for

the image domain. However, it is unnecessary to create a
hierarchical tree of boxes to include the image domain, since x0c
is dependent on the location of xc and the rigid infinite plane. For
elements that are close to the source point xi, the conventional
direct evaluation of the integrals (Eq. (5)) is used.

To determine the number (p) of terms in the multipole and local
expansions, the following empirical formula (see, Ref. [11]) is applied:

p ¼ kDþ c0 logðkDþ pÞ, (18)

where D is the diameter of the cell on which expansions
are calculated, and c0 a number depending on the precision of the
arithmetic. Formula (18) can be applied to adaptively determine the
values of p at different tree levels in the fast multipole algorithms.

The fast multipole formulations discussed above for solving 3-D
acoustic wave problems or Helmholtz equation in general are good
for low frequencies, because of the O(p5) nature of the formulation.
To perform the M2M, M2L and L2L translations, O(p5) computations
are required since there are three summations in all these
translations and two indices in the coefficients, as shown in Eqs.
(13)–(16). In addition, the use of the Wigner-3j symbol in Eqs.
(13)–(16), which is time consuming to calculate each time and
consumes more memory if its values are stored, further reduces the
computational efficiency.

Theorems have been set up by Gumerov in Ref. [17] for
recurrence relations for the calculation of expansion coefficients
that can reduce the complexity for the translations to O(p4). Chew
also summarized these theorems earlier in Ref. [18].

For example, the M2L translation in Eq. (14) can be expressed
in operator terms as

Lm
n ðk;xcÞ ¼ MjLm;m0

n;n0 ðk;xc ; ycÞM
m0

n0 ðk; ycÞ, (19)

where the M2L operator M|L is given by

MjLm;m0

n;n0 ðk;xc; ycÞ ¼
Xnþn0

l¼jn�n0 j
nþn0�l:even

ð2n0 þ 1ÞWn0 ;n;m0 ;m;l
~O
�m�m0

l ðk;xc ; ycÞ. (20)

The method relies on explicitly finding the operators
M|L0;m

0;n (k,xc,yc) and M|Lm;0
n;0 (k,xc,yc) from the definition. These

‘‘Sectorial’’ operators start the initialization point for the recursive
scheme. The generalized operators are then evaluated using the
recursive formulas given by

b�ðmþ1Þ
mþ1 MjLt;mþ1

s;mþ1 ¼ b�t
s MjLt�1;m

s�1;m þ bt�1
sþ1MjLt�1;m

sþ1;m, (21)
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b�ðmþ1Þ
mþ1 MjLt;�ðmþ1Þ

s;mþ1 ¼ bt
sMjL

tþ1;�m
s�1;m þ b�ðtþ1Þ

sþ1 MjLtþ1;�m
sþ1;m , (22)

am
n MjLt;m

s;nþ1 ¼ am
n�1MjLt;m

s;n�1 � at
sMjL

t;m
sþ1;n þ at

s�1MjLt;m
s�1;n. (23)

The constants am
n and bm

n in the above equations depend on the
choice of the spherical harmonics. Similar approaches can be
followed for the M2M and L2L translations.

Ong et al. have used this O(p4) scheme to calculate fast Fourier
transforms [19]. Although the number of operations can be
reduced to O(p4) by employing the above recursive relations,
the computing time can still increase quickly with the increase in
the value of p.

For higher frequency problems, the diagonal form proposed by
Rokhlin [20] can be employed to accelerate the computations of
all the translations. Unfortunately, this diagonal form breaks
down at lower frequencies, where the original formulations will
need to be applied [11]. The wideband fast multipole method
proposed by Cheng et al. [21] may be considered, which provides a
seamless framework for combining the low and high frequency
formulations.

In this study, the O(p3) formulation developed by Gumerov and
Duraiswami [22,23] that uses special co-ordinate transformations
in addition to the recursive O(p4) scheme has been implemented.
The M|L operator in Eq. (20) reduces to zero under certain
conditions based on the orientation of the vector xc�yc. Only the
operator M|Lm

n;n0 ¼ MjLm;�m
n;n0 (k,xc,yc) needs to be calculated in this

case because the other terms are zero. The non-zero M|L operator
(M|Ln,n0

m) is a function of the spherical harmonics and hence varies
slightly from that of Gumerov. M|Lm

n;n0 ¼ M|Lm;m
n;n0 (k,xc,yc). The

reduction of the complexity to O(p3) is thus achieved and the
new translation can be expressed as

Lm
n ðk;xcÞ ¼ MjLm

n;n0 ðk;xc; ycÞM
m
n0 ðk; ycÞ. (24)

The co-ordinate system is rotated once to obtain the correct
orientation of the vector xc�yc. The complexity of rotating the
multipole moments is also O(p3). The translation requires O(p3)
complexity. Rotating the local expansions back to the original co-
ordinate system requires another O(p3) complexity. Even for the
rotations, recursive formulas are used to expedite the process. The
rotation of the multipole moments to a new co-ordinate system is
dependent only on the spherical harmonics. The detailed formulae
for the same are available in the Ref. [23]. As all the operations are
O(p3), the resultant formulation is now O(p3).

This O(p3) formulation that is adequate for both low and high
frequency applications has been implemented to further improve
the efficiencies of the adaptive FMBEM, especially for higher
frequency problems. This O(p3) formulation does not use the
Wigner-3j symbol explicitly, which can also reduce the memory
usage.
3. FMBEM algorithm for half-space acoustic problems

With all the formulas introduced in Section 2, we are able to
construct the 3-D FMBEM algorithm for half-space acoustic wave
problems. The adaptive FMM algorithm is described in the
following subsections. It is a modified version of the adaptive
algorithm reported in Refs. [10,15] for full-space problems.

The FMBEM uses iterative solvers such as the generalized
minimum residue method (GMRES) in which the FMM is used to
accelerate the multiplication of matrix A and vector k (Eq. (6)).
The adaptive FMM algorithm consists of the following three steps
(A, B, C):
A.
 Initialization: First, an adaptive hierarchical tree of boxes is
constructed by dividing the real problem domain (boundary of
the structure) into smaller and smaller sub-domains until the
number of elements contained in each leaf (childless box) is
less than the maximum number allowed in the box.
B.
 Upward pass: Starting from the lowest level, the multipole
moments are calculated for each box (Eqs. (11) and (12)) and
translated to the box’s parent’s center using M2M (Eq. (13)).
Continue the M2M until tree level 2 is reached. After the
upward pass, every box down from level 2 should have a
multipole moment set. The upward pass is exactly the same as
the one reported in Refs. [10,15] for full-space FMBEM.
C.
 Downward pass: Starting from level 2 to the lowest level, at
each level l, perform the following steps:
Step I: The multipole moments of each box b at level l are M2L
(Eqs. (15) and (16)) translated to the local expansions at the
center of box c and its mirror box c0, respectively where box c is
each box in the interaction list of box b.
After step I, one set of local expansion coefficients is calculated
for each box b on level l and another set of local expansion
coefficients is obtained for each mirror box b0. Since mirror box
center can be determined by the real box center, we associate
the mirror box local expansion with its corresponding box in
the real domain and refer these two local expansions as the
real local expansion and image local expansion of box b.
Step II: If b is not on level 2, use L2L (Eq. (16)) to translate b’s
parent box’s real local expansion and image local expansion
coefficients to box b.
Step III: For box b at the level l which is a leaf box or at the
lowest level, calculate gijqj and fijjj for each element i in b

using local expansion (Eq. (17)), and adding direct evaluation
results (Eq. (5)) for element i in box b and elements j in
neighboring leaves of b. (A box is said to be a neighbor of b if it
shares at least a boundary point with b.)
Contributions from the following boxes are added using either
direct evaluation (Eq. (5)) or M2L translation (Eqs. (15) and (16))
based on the relative complexity and satisfaction of the distance
criterion for M2L translation.
1.
 level l0 (l04l+1) leaves that are separated from b (if b is a leaf)
by a level l0 box.
2.
 level l0 (l0ol�1) leaves that are separated from b by a level l0

box.
After the downward pass, the vectors gijqj and fijjj are
calculated in the current iteration step for the matrix–vector
multiplication.
4. Numerical examples

The adaptive half-space FMBEM has been implemented in a
code using Fortran 90, which can be applied to solve half-space
acoustic wave problems with models of the structures sitting
either on or above the infinite and rigid half-space plane.

In all the examples presented below constant triangular
elements are used. For the FMM, a maximum number of 100
elements are allowed in a leaf. The GMRES solver will stop the
iteration when the residue (relative error) is below the tolerance
of 10�5. All the computations for the first two examples presented
below were done on a desktop PC with an Intels 3.0 GHz
Pentiums IV CPU and 1 GB RAM. For the third example with the
windmills, the model was solved on a desktop PC with a 64-bit
Intels CoreTM2 Duo CPU and 8 GB RAM.
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4.1. Sphere models

We choose a sphere with radius a ¼ 1 m and k ¼ 0.5 m�1 as our
first model to verify the adaptive half-space FMBEM. The x–y

plane is chosen as the infinite rigid plane. Both radiation and
scattering problems are considered. The maximum number of
multipole and local expansion terms is set to 6 in this example.

We first test the half-space radiation problem. The total
number of elements on one sphere is 10,800. The adaptive half-
space FMBEM is compared with the full-space FMBEM, in which
another identical sphere with the same boundary condition is
positioned in the image space symmetrical to the x–y plane. The
distance d between the center of the sphere and the rigid plane
varies from 0 to 10 m. The case when d ¼ 0 indicates that the
sphere is cut into two parts by the x–y plane. Only the top
hemisphere is modeled in this case using one half of the total
number of elements (with 5400 elements) for the half-space
FMBEM.

Comparisons of the half-space and full-space FMBEM results
are shown in Table 1, in which |P| is the amplitude of the sound
pressure on the half plane at a sample point located at (5 m, 0, 0).
The boundary condition on the sphere is the Neumann boundary
condition with the value given by (0.0, �207.515). The analytical
result is available for the first case when d ¼ 0, that is,
|P| ¼ 37.1214. The numbers of iterations required are 4–7
iterations. This table shows very good agreement in the
accuracy for both the half-space and full-space results. However,
Table 1
Results for the radiating sphere model (with 10,800 elements per sphere).

Distance d Half-space FMBEM Full-space FMBEM

|P| CPU (s) |P| CPU (s)

0 37.0856a 98.09 37.1061a 121.64

1 71.8088 82.92 71.8120 106.30

2 70.2521 83.03 70.2517 122.56

5 52.0601 83.08 52.0589 110.91

10 33.3989 83.25 33.3992 98.25

a Note: The analytical solution in this case (d ¼ 0) is 37.1214.

Fig. 2. Full-space FMBEM tree structure for the half-space problem.
the total CPU times for the half-space models are much less than
the total CPU time used with the full-space models. This is
because the full-space FMBEM needs an extra sphere in the image
domain and the size of the tree structure increases substantially
as the distance between the sphere and the rigid plane increases,
as shown in Figs. 2 and 3. Figs. 4 and 5 show the contour plots of
the pressures computed using the full-space FMBEM and half-
space FMBEM on the half-space model, respectively, when the
distance d ¼ 4 m.

Next, we study the convergence and stability of the half-space
FMBEM code using the radiation problem with the total number
of elements ranging from 300 to 97,200 for the case d ¼ 3 m. The
number of iterations required is 4. The convergence plots for both
the half-space FMBEM and the full-space FMBEM are presented in
Fig. 6, which shows that the sound pressure at the sample point at
(0, 0, 0) converges very quickly for both the approaches and the
numerical results are very stable for large numbers of the
elements on a single sphere. As shown in Fig. 7, the half-space
FMBEM uses much less total CPU times than the full-space
FMBEM, especially for larger models where the additional
overhead used for the half-space FMBEM is relatively small.

Finally, we test a half-space scattering problem using the same
sphere model where the sphere is sitting at the distance d ¼ 2 m
and impinged upon by a plane incident wave traveling in the +x

direction. The incident wave has a unit amplitude and the non-
dimensional wavenumber ka ¼ 1. The sphere is meshed with
10,800 elements. The contour plot of the pressure computed using
the half-space FMBEM is shown in Fig. 8, where the pressure
values on the sphere match with those obtained by using
the corresponding full-space FMBEM. Again, the total CPU time
for the half-space FMBEM is about one half of the CPU time used
for the equivalent full-space model.
4.2. Sound barrier models

After verifying the accuracy and efficiency of the half-space
FMBEM on the sphere models, we examine the influence of a
sound barrier placed between a point source and a rigid building
using the half-space FMBEM. Much research on the 2-D simula-
tion of the acoustic barriers has been conducted. However, 2-D
simulation is based on the assumption that the barrier and the
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Fig. 5. Plot of sound pressure on the radiating sphere using the half-space FMBEM.

Fig. 4. Plot of sound pressure on the radiating sphere using the full-space FMBEM.
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structure are straight and infinitely long, which may not be
accurate. Due to the high computing cost with the conventional
BEM, the 3-D BEM can only simulate a sound barrier with very
short length. With the FMBEM, long and curved barrier can be
modeled.
In the first sound barrier example, the ground surface, barrier
and building are modeled as non-absorbing rigid surfaces. An
acoustic point source of 1 Pa (corresponding to a sound pressure
level (SPL) of about 94 dB) is placed 50.0 m away from a building
and 1 m above the ground, with k ¼ 0.5 m�1. A quarter-circular
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Fig. 11. Contour plot of sound pressure level (dB) on the building without a barrier.
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barrier of radius R ¼ 50 m and initial height h ¼ 2 m is inserted
between the source and the building to reduce the acoustic sound
registered on the building. The closest distance between the
source and barrier is 7 m. The barrier is modeled as a 1-m-thick
body. The boundary elements used to discretize the building and
barrier has a size of 0.5 m. Figs. 9 and 10 show the dimensions of
the model and the BEM mesh with triangle elements. The
wavenumber k ¼ 0.5 is used for this representative analysis. The
resultant frequency is about 28 Hz. The ka value for these
problems is relatively high (ka is about 35). The maximum
number of multipole and local expansion terms is set to 20 to get
better accuracy for solving these problems.

Fig. 11 gives the sound pressure level in decibel when no
barrier is present. Fig. 12 shows the contour plot of the dB on the
building and 2-m-high barrier, when the 2-m-high barrier
between the source and the building is placed. The contour plot
indicates poor performance of this low barrier. However, after
increasing the height of the barrier from 2 to 4 m and then to 6 m,
there are marked decreases in the sound pressure levels, as shown
in Figs. 13 and 14.
The results and performance of the half-space FMBEM in
simulations of the sound barrier and building are summarized in
Table 2. The numbers of iterations required are 23–39. It is shown
that the half-space FMBEM is efficient and able to handle these
practical problems.
4.3. Wind turbine model

The analysis of the windmill noise is presented as the last
example to illustrate the potential usefulness of the half-space
acoustic FMBEM code for modeling large-scale half-space acoustic
problems. The blades of the windmill considered are 10 m long
and the total height of the windmill is 28.68 m. Each windmill
is discretized using 111,494 boundary elements. A total of
five windmills are considered for the analysis with a total
number of 557,470 elements. The windmills are placed 50 m
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Fig. 12. Contour plot of SPL (dB) for a 2 m high barrier and the building.

Fig. 13. Contour plot of SPL (dB) for a 4 m high barrier and the building.
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apart in the x and y directions. A velocity boundary condi-
tion calculated using a rotation of the blades are applied to all
the blades of the windmill and zero velocity condition elsewhere.
The wavenumber k ¼ 0.05 m�1 is used for this analysis. The
maximum number of multipole and local expansion terms was set
to 10 for this problem.

The solution for the entire windmill BEM model took about
3778 s on a 64-bit Intels CoreTM2 Duo desktop PC with 8 GB RAM.
The number of iterations required is 13. The sound pressure level
was calculated first for the boundaries of the windmills (Fig. 15)
and then on a 200 m�200 m field surface (on the x–y plane)
composed of 10,201 field points (Fig. 16). The time used in
calculating the field values (one matrix–vector multiplication) is
300 s using the FMM and 1200 s using the conventional direct
method.

This analysis of the windmills is preliminary, aimed only to
show the potential of the FMBEM for modeling such large-
scale half-space acoustic problems. Further studies of the wind-
mill noise problems can be conducted with more realistic
conditions.
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Fig. 14. Contour plot of SPL (dB) for a 6 m high barrier and the building.

Table 2
Results for the acoustic barrier analysis.

Number of

elements

Max dB on

building

CPU time

(s)

Building without barrier 7910 73.61 562

Building with 2 m high

barrier

11,122 71.84 1230

Building with 4 m high

barrier

13,698 66.03 1711

Building with 6 m high

barrier

16,274 63.88 1966

Fig. 15. Plot of sound pressure level (dB) on a single windmill.
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5. Discussions

An adaptive BEM is presented in this paper for modeling 3-D
half-space acoustic wave problems. Instead of using the mirror
image technique to the discretized BEM systems of equations for
half-space acoustic problems, the half-space Green’s function is
adopted in the BIE formulation explicitly, which ensures that the
hierarchical tree structure in the FMBEM can be constructed in the
real domain only. The adaptive algorithm is also used in the half-
space FMBEM, thus, the memory usage and CPU time are
significantly less than the full-space FMBEM. The accuracy of
the half-space FMBEM is found to be comparable to that of the
full-space FMBEM.

More improvements can be made for the adaptive FMBEM for
modeling half-space problems. Diagonal translation that was
proposed by Rokhlin [20] and Lu and Chew [24] can be used to
speed up the half-space FMBEM in even higher frequency ranges.
Wideband fast multipole formulation [21] can also be considered
that can seamlessly integrate the low and high frequency
approaches. Although it is easy to implement in the code to use
the tree structure only for the real boundary of the object, it might
be beneficial to use a tree structure that covers both the real and
image boundaries. In this way, the M2L translations from the
expansion points to the image points may be more efficient due to
the larger distance. This approach can be explored in the future
work.

The applicability of the developed adaptive half-space FMBEM
discussed in this paper is, however, not limited to acoustic
problems. This adaptive half-space algorithm can also be
extended to solve many other half-space problems, such as
potential, electrostatic, electromagnetic and other problems using
the fast multipole BEM.
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Fig. 16. Plot of the SPL (dB) on the field surface and five windmills (DOFs ¼ 557470).
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