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a b s t r a c t

A fast multipole formulation for 2D linear viscoelastic problems is presented in this paper by

incorporating the elastic–viscoelastic correspondence principle. Systems of multipole expansion

equations are formed and solved analytically in Laplace transform domain. Three commonly used

viscoelastic models are introduced to characterize the time-dependent behavior of the materials. Since

the transformed multipole formulations are identical to those for the 2D elastic problems, it is quite

easy to implement the 2D viscoelastic fast multipole boundary element method. Besides, all the

integrals are evaluated analytically, leading to highly accurate results and fast convergence of the

numerical scheme. Several numerical examples, including planar viscoelastic composites with single

inclusion or randomly distributed multi-inclusions, as well as the problem of a crack in a pressured

viscoelastic plane, are presented. The results are verified by comparison with the developed analytical

solutions to illustrate the accuracy and efficiency of the approach.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

It has long been accepted that most engineering materials
exhibit noticeable time-effects, such as polymers, composites,
non-ferrous metals, rocks, concrete and so on. Because of this
time-effect, actual materials will possess viscous and elastic
properties simultaneously and these properties will make many
structures suffer from creep, relaxation and hysteresis problems.
Therefore, it is crucial to fully understand the mechanism and
response of viscoelastic materials under external loadings, so as to
provide the scientific basis for predicting the service-life of the
engineering components. Numerical techniques such as the
boundary element method (BEM) are a promising tool in serving
these purposes.

BEM can be regarded as a feasible numerical method, which is
more accurate than finite element method (FEM) and other
numerical methods, due to its features of dimensionality reduc-
tion for linear problems and high accuracy. Many investigators
have applied the BEM to the investigation of viscoelastic
characteristics of the materials. The most commonly used
approach is the Laplace transform method [1–4]. By the elastic–
viscoelastic correspondence principle [5], the viscoelastic govern-
ing equations can be transformed into a set of corresponding
ll rights reserved.
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elastic governing equations using the Laplace transform, and then
the solutions are transformed back to the time domain by
numerical methods. From the basic assumptions of viscoelastic
constitutive relations and weighted residual techniques, Mesquita
et al. [6–9] presented a boundary element alternative procedure
for Boltzmann and Kelvin viscoelasticity. They produced the
differential systems of equations with respect to time variable,
which are solved by an appropriate time marching process.
Combining the approach based on the two dimensional version of
Somigliana’s formula with the time-marching procedure de-
scribed for the viscoelastic analysis by Mesquita et al., Huang
et al. [10] considered the problem of an infinite, isotropic
viscoelastic plane containing randomly distributed elastic inclu-
sions. Sensale et al. [11–13] transformed the domain integral into
a boundary integral using the dual reciprocity method for the
stress analysis of bodies with aging viscoelastic constitutive
relations. Birgisson et al. [14–16] applied a special boundary
element-based method, called the displacement discontinuity
method, and employed an explicit time-marching scheme to
model the quasi-static responses of linear viscoelastic materials.

Analysis of viscoelastic problems often requires multi-time-
step computation that can accurately predict the creep or
relaxation behavior of the bodies under external loadings. There-
fore, when we are dealing with large-scale models, such as the
multi-inclusion composites, the computation time and storage
space will increase significantly. The conventional boundary
element-based method requires O(N2) operations using iterative
solvers (with N being the number of equations) because of its
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dense and non-symmetrical matrices. Thus conventional BEM-
based approach is not suitable for solving viscoelastic problems
with large-scale models. Fast multipole method (FMM) is a new
algorithm developed recently for numerical solution of BEM. This
algorithm has been proved that it can solve system of equations
formed by BEM with higher efficiency and lower storage than that
of the traditional solvers. Rokhlin and Greengard [17] first
introduced the concept of fast multipole method to deal with
2D potential problems, and reduced the CPU time and memory
usage in the fast multipole accelerated BEM to O(N). The
advantages of fast multipole BEM for large-scale problems make
it considerably applicable for more practical applications.

For elasticity problems, many investigations have been carried
out based on fast multipole BEM approaches. Greengard et al.
[18,19] developed a fast multipole formulation for directly solving
the biharmonic equations using Sherman’s complex variables
formulae. Peirce and Napier [20] gave a spectral multipole approach
similar to the FMMs, reducing the complexities of both memory and
operation to O(N log N). Yao et al. [21] and Wang et al. [22]
presented a fast and accurate algorithm for modeling composite
materials and crack problems. They applied complex Taylor
expansion and adaptive tree structure to obtain a new shift
of multipole expansion for two dimensional elastostatics. Liu et al.
[23–25] proposed compact and efficient fast multipole BEM
formulations for both 2D and 3D elasticity problems. In Liu’s
approach for 2D elastostatics [24], the displacement and traction
kernels are represented using two complex analytic functions, and
the two functions are first re-grouped and then expanded to
form two moments for each kernel. This approach has recently been
extended to 2-D multi-domain elasticity problems [26]. More
information about the fast multipole BEM can be found in Ref. [27].

In this paper, a new fast multipole BEM for 2D viscoelastic
problems is formulated. The elasticity version suggested by Liu
[24] is extended to 2D viscoelastic multi-domain problems
by virtue of the elastic–viscoelastic correspondence principle.
Systems of the multipole expansion equations are formed in
Laplace transform domain and solved by time step scheme. Three
commonly used viscoelastic models are introduced to character-
ize the time-dependent behavior of the materials. Some practi-
cally important problems, such as the randomly distributed
multi-inclusion planar viscoelastic composites and a pressured
viscoelastic plane containing a crack are considered. Numerical
results are presented and verified by the analytical solutions to
further illustrate the accuracy and efficiency of the approach. It
indicates that the method is not only easy in the meshing of
complicated geometries, accurate for solving singular fields, but
also practical and often superior in solving large-scale problems.
2. FMBEM for 2D viscoelastic problems

The boundary integral equation for isotropic, linearly viscoe-
lastic materials in the time domain can be written as [28]

CijðxÞujðx,tÞ ¼

Z
s

Uijðx,y,0Þpjðy,tÞþ

Z t

0
pjðy,t�tÞ
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where Cij(x) is a free term determined from the shape of the
boundary at point x; ui and pi are the displacement and traction,
respectively; Uij and Pij are the fundamental solutions of an
infinite 2D viscoelastic plane. To solve Eq. (1), a time marching
scheme can be used. For example, according to the trapezoidal
rule, Eq. (1) can be rewritten as follows:
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where Ûijðx,y,tÞ ¼ @Uijðx,y,tÞ=@t and P̂ijðx,y,tÞ ¼ @Pijðx,y,tÞ=@t, t¼nh

means the total time length t is divided into n time steps, and h is
constant stepsize. Ri

*[(n�1)h] is the entire history when time
tonh, which can be written as
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To solve Eq. (2), we should first know the fundamental
solutions of the 2D viscoelastic problem. It is known that the
governing equation of the viscoelastic problem is quite similar to
that for the elastic problem when it is Laplace transformed [29].
Therefore we can obtain the fundamental solutions Uij and Pij by
the elastic–viscoelastic correspondence principle. If the system is
subjected to a Heaviside unit step force, the transformed
viscoelastic fundamental solutions ~U ij and ~Pij can be defined in
the Laplace domain as

~Uijðx,y,sÞ ¼
1

8p
~J1ðsÞdij log

1

r
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þ ~J2ðsÞ r,ir,j�
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2
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In the viscoelastic analysis, for many cases it can be assumed
that the material behaves elastically in dilatation. Thus the bulk
modulus K is a constant, while the viscoelastic shear modulus G

and the Poisson’s ratio n are time-dependent in general.
This assumption is made for simplicity and could reduce the
complexity of the mathematical derivations. In such a case, the
functions ~J1ðsÞ,

~J2ðsÞ,
~J3ðsÞ,

~J4ðsÞ appearing in Eqs. (5) and (6) can be
obtained as

~J1ðsÞ ¼
2ð3Kþ7 ~GÞ
~Gð3Kþ4 ~GÞs

ð7Þ

~J2ðsÞ ¼
2ð3Kþ ~GÞ
~Gð3Kþ4 ~GÞs

ð8Þ

~J3ðsÞ ¼
2ð3Kþ7 ~GÞ

ð3Kþ4 ~GÞs
ð9Þ
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~J4ðsÞ ¼
2ð3Kþ ~GÞ

ð3Kþ4 ~GÞs
ð10Þ

with s being the transform parameter. Notice that the constitutive
equations for a linear viscoelastic material in the differential
form are:

PuSij ¼ Q ueij

~G ¼
Q uðsÞ

2PuðsÞ
ð11Þ

where P0, Q0 are time differential operators and Sij, eij are the
deviator components of the stress and strain tensors. Then,
Eqs. (7)–(10) can accordingly be expressed as
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By applying Laplace inverse transform to Eqs. (5) and (6), it is
readily easy to obtain the viscoelastic fundamental solutions in
the time domain.

Based on Eqs. (5) and (6), we can further establish the
multipole expansion formulations of the 2D viscoelastic problem.
Assume that pj and uj are piecewisely constant over each of the N

intervals constituting the boundary S. Similar to the multipole
expansion formulations developed by Liu [24], the integral
equations in Eq. (2) can be written in complex forms as follows:
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where J1(t), J2(t), J3(t), J4(t) are inverted from Eqs. (12)–(15),

J1ðtÞ ¼ L�1½~J1ðsÞ�, J2ðtÞ ¼ L�1½~J2ðsÞ�

J3ðtÞ ¼ L�1½~J3ðsÞ�, J4ðtÞ ¼ L�1½~J4ðsÞ� ð18Þ

Rearranging Eqs. (16) and (17), one obtains
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where Rk, Ak, Wk, Yk, Bk, and Vk are called moments about zc which
are independent of the collocation point z0 and only need to be
computed once. They are evaluated as follows:
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in which, Ok and Ik are two auxiliary functions:

Ik ¼
zk

k!
for kZ0 ð29Þ

O0ðzÞ ¼�lnðzÞ, OkðzÞ ¼
ðk�1Þ!
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for kZ1 ð30Þ

It should be mentioned that we can obtain the results of
displacements and tractions at t¼0 by the conventional FMBEM
for pure elasticity. Then, the multipole expansion for the
viscoelastic problem can be easily formulated step by step. It is
also understandable that the M2M, M2L and L2L translations
remain the same as that for the elastostatic problems. Thus, it is
not difficult to program the new 2D viscoelastic counterpart
based on the fast multipole BEM code for the 2D elastic problems.
Detailed analysis and formulations of the subsequent multipole
translations and implementations of FMM can be found in Ref.
[24], for example.
3. Linear viscoelastic models

The viscoelastic materials exhibit both elastic and viscous
properties simultaneously under appropriate conditions, and then
accordingly possess creep, relaxation or hysteresis phenomena. To
describe this kind of materials approximately, we can combine
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Fig. 2. A concentric cylinder.
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spring and dashpot elements in series, in parallel or in a more
complicated way. Here we choose three types of models to
represent the linear viscoelastic behavior of the real materials.
Fig. 1(a) shows the Voigt–Kelvin model, which can describe a
body that has delayed elasticity. However, it cannot describe the
relaxation phenomenon. Fig. 1(b) shows the Burgers model which
describes a body that has instantaneous elasticity, delayed
elasticity and viscous flow. It can also be used to simulate the
materials working under high stress or high temperature. Fig. 1(c)
presents the two Voigt+one spring model which is commonly
used, because it can fit experimental curves better. Thus, we often
use it to describe the viscoelastic solids in engineering, such as
concrete and rock. The operators P0(s), Q0(s) for the three types can
be written as follows, respectively:

PuðsÞ ¼ 1, Q uðsÞ ¼ EþZs ð31Þ
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þ
Z1þZ2

E2

� �
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Once we choose the model to describe the linear viscoelastic
behavior, then following the procedure presented in Section 2, we
can get the fundamental solution for the viscoelastic problem.
As an example, we present four basic time functions for the
Voigt–Kelvin type materials:
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Fig. 1. Three models representing t
4. Numerical examples

We consider in this section several examples to verify the
proposed numerical procedures of the fast multipole BEM for 2D
multi-domain viscoelastic problems. The analytical solutions are
also developed here to compare with the numerical results. As we
mentioned before, the multipole expansion formulations given in
our work closely follows the ideas in [24] which basically invokes
the FMM for Laplace’s equation, therefore it will lead to an O(N)
numerical method in problems with N unknowns. However, since
R�i appears in Eq.(2) which involves the entire history up to time
tonh, comparing to the previous time step, the next time step
will cost more CPU time.

4.1. A simple concentric cylinder

We first study a simple concentric cylinder to verify the BEM
program for multi-domain problems, Fig. 2. In this case, a solid
cylindrical fiber is embedded in a larger matrix, where the matrix is
isotropic, linear viscoelastic material, which is modeled by the
Burgers type model, and the fiber is isotropic elastic. Applying the
theory of elasticity for plane strain case in the polar coordinate
system, one can derive the following expressions for the radial
displacement and stress fields in the fiber and matrix, respectively:

uf
r ¼ Af r, 0rrra ð38Þ
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r
, arrrb ð39Þ
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Af Ef
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þ2nm
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r2
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, arrrb ð41Þ
E2

E2

�2
�1

�2

he linear viscoelastic behavior.
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Here it is assumed that a radial displacement d or a radial
tension d is prescribed on the outer boundary of the matrix r¼b.
Thus the boundary and interface conditions are:

r¼ b : um
r ¼ d ðcondition 1Þ or sm

r ¼ d ðcondition2Þ ð42Þ

r¼ a : um
r ¼ uf

r , sm
r ¼ s

f
r ð43Þ

Three constants Af, Am and Bm can be solved by combining
Eqs.(38)–(43):
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Am ¼
db2bð2nm�1�aÞ

ðb2�a2Þð2nm�1Þþað2a2nm�a2�b2Þ

Bm ¼
da2b2bða�1Þ

ðb2�a2Þð2nm�1Þþað2a2nm�a2�b2Þ
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

u r
 (

m
)

 analytical results
 numerical results

0
0.0

0.3

0.6

0.9

1.2

1.5

u r
 (

m
)

 analytical results
 numerical results

Time (sec)

Ef = 0

Ef = 10

20 40 60 80 100

0

Ti

20 40

Ef = 1

Ef = 100

Fig. 3. Comparison of analytical and numerical results of (a) displacement (condition
Af ¼
2db2bðnm�1Þ

ðb2�a2Þð2nm�1Þþað2a2nm�a2�b2Þ
ð45Þ

for condition 2, and

a¼
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, b¼

ð1þnmÞð1�2nmÞ

Em
ð46Þ

The effective elastic material properties can be directly
converted to the viscoelastic properties by using the correspon-
dence principle on the basis of Laplace transform. The correspon-
dence process is performed by replacing each elastic modulus
with the corresponding modulus related to time. It should be
mentioned again that the elastic modulus of the rigid inclusion
and bulk modulus of each phase are assumed constant. For
example, the radial displacements in Laplace transform domain at
r¼a under condition 2 can be written as

~uraðsÞ ¼
dab2 ~bð2 ~nm�1� ~aÞ

s½ðb2�a2Þð2 ~nm�1Þþ ~að2a2 ~nm�a2�b2Þ�

~a ¼
Ef ð1þ ~nmÞð1�2 ~nmÞ

~Emð1þnf Þð1�2nf Þ
, ~b ¼

ð1þ ~nmÞð1�2 ~nmÞ

~Em

~Em ¼
9 ~GmKm

ð3Kmþ
~GmÞ

, ~nm ¼
3Km�2 ~Gm

2ð3Kmþ
~GmÞ

, ~Gm ¼
Q uðsÞ

2PuðsÞ
ð47Þ
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1 at r¼a); (b) stress (condition 1 at r¼a); (c) displacement (condition 2 at r¼b).
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In the numerical calculation, the following material para-
meters for the matrix are used:
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Fig. 5. Normalized crack opening displacement.
for matrix E1 ¼ 10MPa, E2 ¼ 25MPa

Z1 ¼ 750MPa � s, Z2 ¼ 35MPa � s ð48Þ

The numerical results are obtained by using 200 elements on
the outer boundary and 200 elements on the interface. Fig. 3 plots
the variations with time of the radial displacement and stress at
r¼a or r¼b under condition 1 or condition 2. The numerical
results calculated by the fast multipole BEM are compared with
the exact analytical solution presented above. Four different
values of Young’s modulus of the fiber (Ef¼0, 1, 10 and 100) have
been considered. It is shown that the FMBEM simulation results
are in excellent agreement with the analytical solution, which
indicates that the developed fast multipole BEM is adequate to
predict the viscoelastic behavior of multi-inclusion composites. It
should be mentioned that this example is identical to the thick-
walled hollow cylinder subjected to an external pressure case
when Ef¼0. It is interesting from the results that the radial
displacement at r¼a increases with the increase of the time when
the Young’s modulus of the fiber is relatively low, while the
displacement decreases with the time when the Young’s modulus
of the fiber is relatively high, see Fig. 3(a).
4.2. A crack in a pressured viscoelastic plane

We next study the accuracy of the fast multipole BEM for a
crack-like inclusion in a viscoelastic plane of the Voigt–Kelvin
type. Since we employ constant boundary elements to discretize
the BIE, all integrals can be evaluated analytically, which make it
easy to deal with the nearly singular integrations problems. The
crack is modeled by an elliptical hole in FMBEM simulation, with
the length of the crack b¼0.025, and a/b¼0.01. The crack is
located at the center of a square sheet which is subjected to a unit
uniform and uniaxial tension P in the x-direction, as depicted in
Fig. 4.

When a/b¼0, according to the fracture mechanics [30], the
crack opening displacement u(x, t) for the viscoelastic problem
can be evaluated as

uðx,tÞ ¼
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�x2
p

ð6KþEÞE
�exp �

Et

Z

� �
ð6KþEÞþ6K

�

þE 4�3exp �
ð6KþEÞt

Z

� �� �	
ð49Þ

where E is the spring constant and Z is the viscosity coefficient of
the dashpot as illustrated in Fig.1(a). The following Voigt–Kelvin
model parameters are used:

for matrix E¼ 23500 MPa, Z1 ¼ 425 MPaUs, K ¼ 15666:6667 MPa

ð50Þ
P
x

y

b

b

P
2a

Fig. 4. Viscoelastic plane containing a crack-like inclusion.
Fig. 5 presents the normalized crack opening displacement at
the center of the crack (x¼0) calculated by the fast multipole
BEM, which is compared with the analytical solution for the
idealized crack a/b¼0, where the normalized displacement uðx,tÞ
can be defined as

uðx,tÞ ¼
Kuðx,tÞ

Pb
ð51Þ

It is seen that the results obtained from the FMBEM agree well
with the corresponding analytical solutions. It should be men-
tioned that because of the characteristics of the Voigt–Kelvin
model, the displacement at the center of the crack will reach a
specific value when t tends to infinity.
4.3. Multi-inclusion problems

In the last example, we study the properties of multi-phase
planar viscoelastic composites (plane strain condition). The
problem examined is that of randomly distributed circular elastic
inclusions or holes embedded in a matrix possessing the linear
viscoelastic properties, which is modeled by the two Voigt+one
spring type model. First, we follow a popular micromechanical
method, Mori–Tanaka method, to approximately determine the
effective composite properties when the matrix is viscoelastic.
This method has been widely applied for elastic phases, and can
be extended to the viscoelastic case by the correspondence
principle. Due to the isotropy of the overall stiffness tensor, the
effective shear modulus G and planar bulk modulus K for the
composite with circular inclusions, estimated by Mori–Tanaka
method, are expressed as

G¼ G0 1þ
2f

ð1�f ÞðK0þ2G0Þ=ðK0þG0Þþ2G0=ðG1�G0Þ

� �
ð52Þ

K ¼ K0 1þ
f

ð1�f ÞK0=ðK0þG0ÞþK0=ðK1�K0Þ

� �
ð53Þ

where K0 and G0 are the shear modulus and bulk modulus of the
matrix, and K1 and G1 are the shear modulus and bulk modulus for
the inclusion, respectively, and f is the volume content of the
inclusions. Based on the relationship between the elastic
constants, the effective Young’s modulus of the composite can
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be obtained quite easily for the two-dimensional case as

E¼
4GK

KþG
ð54Þ

Using the same method and hypothesis as Example 1, the
constitutive equation of the composite in the Laplace transform
domain becomes

eðsÞ ¼ s
s ~E

ð55Þ

where s is the uniaxial tension applied to the opposite edges, e(s)
is the average strain of the composite along the tension direction
in the transform domain, and ~E is the effective Young’s modulus
of the composite in the Laplace transform domain, which can be
expressed as

~E ¼
4 ~G ~K
~Kþ ~G

~G ¼ ~G0 1þ
2f

ð1�f ÞðK0þ2 ~G0Þ=ðK0þ
~G0Þþ2 ~G0=ðG1�

~G0Þ

" #

~K ¼ K0 1þ
f

ð1�f ÞK0=ðK0þ
~G0ÞþK0=ðK1�K0Þ

" #
, ~G0 ¼

Q uðsÞ

2PuðsÞ
ð56Þ

Applying the Laplace inverse transform to Eq. (55) from the
transform domain into the time domain, one can obtain the time
variation of the average strain of the composite along the tension
direction.

For the multi-inclusion composite, analytical solution is
obtained for the average strain, which can be employed to
compare with the developed fast multipole BEM results. For
calculation of the average strain along the tension direction by
FMBEM, the sheet is subjected to a unit uniform and uniaxial
tension in x-direction, see Fig. 6. It has been reported by Hu et al.
[31] that the results tend to be stable when the number of
inclusions is greater than 100, and then the body presents
apparent homogeneous and isotropic characteristics. Therefore,
in our example, the number of inclusions is kept to be 100, and
the radius of inclusions is changed with the volume content of the
fibers. Once all the boundary values are determined, one can use
the results to estimate the average strain of materials with multi-
inclusions. The average strain in the longitudinal direction is
determined by

ex ¼
UABþUCD

L
ð57Þ
A 

B C 

D 

� �

Fig. 6. Viscoelastic matrix embedded with elastic circular inclusions.
where L is the length of the square sheet, and U is the effective
displacement calculated from the fast multipole BEM results as

U ¼

Pn
e

R
Ge

Ue dGe

L
ð58Þ

Creep problems are often encountered in civil engineering in
many cases, such as pressure pipes and asphalt pavement. It is
known that most engineering materials more or less have the
viscoelastic characteristics, which will make many structures
suffer from creep under some environmental conditions. Here, we
also investigate the creep characteristics of the multi-inclusion
composite from the numerical results:

JðtÞ ¼
ex

s
ð59Þ

where J(t) is the creep compliance, which is defined as the strain
function in time resulted from the application of a unit step stress.
In linearly viscoelastic materials, the creep compliance is
independent of stress level.

The analytical and numerical results for the average strain of
the multi-inclusion composite are calculated with the following
parameters:

for matrix E0 ¼ 1:926 MPa, E1 ¼ 2:328 MPa, E2 ¼ 1:389 MPa
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Fig. 7. Comparison of the numerical and analytical average strains for (a) volume

fraction f¼0.3 and (b) volume fraction f¼0.4.
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Z1 ¼ 752:516 MPa � s, Z2 ¼ 31:549 MPa � s

for fiber nf ¼ 0:25, Ef ¼ 0� 100 MPa ð60Þ

The numerical solution is obtained by using 200 elements on
the outer boundary and 20 elements on each interface of the
inclusions. Fig. 7 presents the time variation of the average strain
along the x-direction when Young’s modulus of the fibers Ef¼0, 1,
10 and 100. Both the analytical results predicted from the
micromechanical model presented above and the numerical ones
calculated by fast multipole BEM are given. It is noted that the fast
multipole BEM simulation results again show good agreement
with the analytical predictions, especially for multi-inclusion
composites. However, for a viscoelastic plane with multiple
circular holes, the numerical results are not quite close to the
analytical prediction, but they show the same trend of changing
with the time. This is quite reasonable, because for the case of
holes, there are obvious differences in results obtained from
various analytical approaches when the volume fraction of holes
is high. For instance, it has been reported that the effective
Young’s modulus predicted by the Mori–Tanaka method is higher
than the result of the generalized self-consistent method [31].

Fig. 8 shows the effect of the volume content on the creep
compliance when multiple rigid inclusions (Ef¼108 MPa) are
embedded in a viscoelastic matrix. During creep at a constant
force, the strain increases with time. The corresponding creep
compliance increases with the decrease of the volume content of
the inclusions. This indicates that at a lower volume content, the
material will creep faster.
5. Conclusions

A new approach for analyzing the time-dependent behavior of
linear viscoelastic materials by the fast multipole BEM via the
elastic–viscoelastic correspondence principle is presented. The
transformed fast multipole formulations have been established
and the inversions of the related transformed functions are
performed analytically. Since the resulting M2M, M2L and L2L
translations are identical to those for the 2D elastic case presented
in Ref. [24], it is quite easy to program the 2D viscoelastic fast
multipole BEM based on the counterpart for the 2D elastic case.

Several viscoelastic models are adopted to characterize the
creep behavior of linear viscoelastic materials. In our paper, all the
integrals are evaluated analytically, leading to highly accurate
results and fast convergence of the numerical scheme. Three
numerical examples are given to demonstrate the accuracy,
efficiency, and versatility of the developed fast multipole BEM
for viscoelastic problems. It indicates that this method is not only
easy in the meshing of complicated geometries, accurate for
solving singular fields or fields in infinite domain, but also
practical and often superior in solving large-scale problems. In
general, the advantage of fast multipole BEM in higher speed and
lower storage makes it possible to deal with many potential
application problems, especially for multi-time-step problems
(e.g. the viscoelastic case).

The extension of the present fast multipole BEM simulation
and analytical study to 3D viscoelastic problems will be an
interesting topic. Besides, consideration of interfacial cracking
process of multi-inclusion viscoelastic composites under external
loadings will be another challenge, which is very important for
the exploration of failure mechanism of viscoelastic composites.
Research results along these lines will be reported in future
works.
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