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Abstract This paper describes formulation and implementation of the fast multipole

boundary element method (FMBEM) for 2D acoustic problems. The kernel function

expansion theory is summarized, and four building blocks of the FMBEM are described

in details. They are moment calculation, moment to moment translation, moment to local

translation, and local to local translation. A data structure for the quad-tree construction

is proposed which can facilitate implementation. An analytical moment expression is

derived, which is more accurate, stable, and efficient than direct numerical computation.
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1 Introduction

The boundary element method (BEM), also referred to as the boundary integral equa-
tion (BIE) method, has been used to solve acoustic problems for many years[1–4]. The BEM
discretizes the boundary only instead of the domain, which takes less CPU time due to the one-
dimension reduction in mesh generations. However, the BEM has some drawbacks. The most
troublesome one is that the BEM leads to systems of equations with dense and non-symmetrical
coefficient matrices. Therefore, the size of the memory for storing coefficient matrix generated
by BEM is O(N2), with N being the number of degrees of freedom. Solving the BEM sys-
tems of equations directly, such as by Gauss elimination method, will need O(N3) arithmetic
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operations. Thus, memory cost and solution time have been the limiting factors for solving
large-scale acoustic problems by the BEM.

To overcome the drawback in numerical computation in the BEM, much work has been
devoted to finding efficient methods to solve the BEM equations with less memory and CPU
time. In the mid of 1980s, the fast multipole method (FMM) was innovated by Rokhlin and
Greengard[5–7]. FMM can improve solution of the BEM systems of equations dramatically and
decrease memory and CPU time from O(N2) to O(N). The key idea behind the FMM is the
multipole expansion of the kernel in which the connection between the field point and the source
point is separated.

The FMM was later extended to 2D Helmholtz equation. There are some papers dealing
with the FMM for 2D acoustic problems[8–11]. Rokhlin[8] discussed an algorithm for the rapid
solution of boundary value problems for 2D Helmholtz equation based on iterative computation.
Amini and Profit[9] described a one-level diagonal form FMM for 2D scattering theory. Amini
and Profit[10] also studied the multi-level fast multipole solution of Burton and Miller’s hyper-
singular formulation for the Helmholtz equation in 2D scattering problem. Chen and Chen[11]

employed the concept of the FMM to accelerate the construction of influence matrix in the dual
boundary integral equation method for exterior acoustic problems. For 3D acoustic wave prob-
lems, Liu, Shen, and Bapat have done extensive research on the fast multipole BEM (FMBEM)
for both full-space and half-space problems[12–14].

There are actually two forms of the FMM for Helmholtz equation in [8–14], one is based
on convolution form and the other is based on diagonal form. Both of them fail in some way
outside their preferred frequency regime. Using convolution form FMM at the high frequency
problem results in algorithms whose CPU time requirements are O(p3) with p being the trun-
cation number, while employing diagonal form FMM at the low frequency problem leads to
numerical instability. A lot of work has been done to overcome this problem. Both the un-
derlying theory and some of the practical aspects of implementation to allow for stability and
high accuracy at all wavelengths of a simple version of the FMBEM for the Helmholtz equation
in two dimensions are described in Ref. [15]. Wideband FMBEM by combining convolution
and diagonal form are proposed[16–17]. Although wideband FMBEM is stable and efficient for
any frequency which is greater than zero, there is still room for the improvement of diagonal
FMBEM which can make the wideband FMBEM performance better in return.

Following Ref. [18], which is an in-depth introduction to the fast multipole BEM (FMBE-
M) for 2D potential problems, the basic theory and algorithm of the FMBEM for 2D acoustic
wave problems are discussed in this paper. The kernel function expansion theory, data struc-
ture for programming and the four building blocks (moment calculation, moment to moment,
moment to local expansion, and local expansion to local expansion) are described in details.
An analytical moment expression is proposed.

This paper is organized as follows: In Section 2, we begin with a brief description of the
boundary integral equation (BIE) formulation for 2D acoustic problems and the conventional
BEM. In Section 3, the multipole expansion theory is described, which is the foundation of
the FMBEM. In Section 4, we provide the formulations for the four essential building blocks:
moment calculation (M), moment to moment translation (M2M), moment to local translation
(M2L), and local to local translation (L2L). In Section 5, a data structure for the quad-tree
construction which can facilitate the implementation is proposed. Analytical moment expres-
sion is derived which is accurate, stable and efficient. Some other remarks concerning program
implementation are also described in this section. Numerical examples and an application are
presented in Section 6 to demonstrate the efficiency and validity of the FMBEM. Finally, a
summary is given in Section 7 to conclude this paper.
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2 Boundary integral equation and conventional BEM

2.1 2D acoustic problem and its BIE formulation
Consider a 2D object with boundary Γ in an infinite acoustic medium of mean density ρ

and speed of sound c as shown in Fig. 1. The governing differential equation for steady-state
linear acoustics is the following well known Helmholtz equation:

∇2ϕ + k2ϕ = 0, (1)

Fig. 1 2D exterior domain and its boundary

where ϕ is the sound pressure, and k is the wave number defined by k = w/c, in which w is the
angular frequency. By using Green’s second identity, (1) is reformulated into integral equation
as follows[19]:

ϕ(zi) =
∫

Γ

(∂G(z, zi)
∂n(z)

ϕ(z) − G(z, zi)q(z)
)
dτ + ϕI(zi), ∀zi ∈ D, (2)

where zi is a field point and z is a source point on boundary Γ, D = De ∪ Di, n(z) is the
normal vector at point z (pointing into the exterior or interior domain for exterior and interior
respectively). Also, ϕI is an incident wave and will not present for radiation problems, q(z) =
∂ϕ(z)

∂n . In this paper, time convention adopted is e−iwt, so the free space Green’s function G for
2D problems is given by

G(z, zi) =
i
4
H1

0 (k‖z̄ − z̄i‖), (3)

in which i =
√−1, z̄ = [x y], and operator ‖z̄‖ =

√
x2 + y2.

Letting point zi approach the boundary leads to the following conventional boundary integral
equation (CBIE):

c(zi)ϕ(zi) =
∫

Γ

(∂G(z, zi)
∂n(z)

ϕ(z) − G(z, zi)q(z)
)
dτ + ϕI(zi), ∀zi ∈ Γ, (4)

where constant c(zi) = 1/2 if Γ is smooth around point zi.
There is a defective concerning the CBIE for unique solution of exterior acoustic problem

at the eigen-frequency associated with corresponding interior problem. To deal with the non-
uniqueness difficulties, Burton and Miller[20] proposed a method by combining the CBIE and
the normal derivative of the CBIE. Taking the derivative of integral representation equation (2)
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with respect to the normal at the field point zi and also letting point zi approach the boundary
lead the following hypersingular boundary integral equation (HBIE):

c(zi)q(zi) =
∫

Γ

( ∂2G(z, zi)
∂n(zi)∂n(z)

ϕ(z) − ∂G(z, zi)
∂n(z)

q(z)
)
dτ + qI(zi), ∀zi ∈ Γ. (5)

For an exterior problem, (4) and (5) have a different set of fictitious frequencies at which a
unique solution for the exterior problem cannot be obtained. However, (4) and (5) will always
have only one solution in common. Given this fact, the following linear combination of (4) and
(5) (CHBIE) should yield a unique solution for all frequencies:

c(zi)ϕ(zi) − ϕI(zi) −
∫

Γ

(∂G(z, zi)
∂n(z)

+ α
∂2G(z, zi)

∂n(zi)∂n(z)

)
ϕ(z)dτ

=αqI(zi) − αc(zi)q(zi) −
∫

Γ

(
G(z, zi) + α

∂G(z, zi)
∂n(zi)

)
q(z)dτ, (6)

where α is a coupling constant that can be chosen as i/k[21]. This CHBIE formulation is referred
to as the Burton-Miller formulation.

The main task of solving a 2D acoustic problem is to solve the boundary integral equation
(6) together with impedance boundary condition. The general impedance boundary condition
is

iρwϕ̃(z) + σ
∂ϕ̃(z)

∂n

∣∣∣
z∈Γ

= 0, (7)

in which σ is the boundary impedance. The two extreme situations are Newman boundary
condition corresponding to σ = ∞ and Dirichlet boundary condition corresponding to σ = 0.

In the case of 2D exterior acoustic problem, (2) implicitly satisfies the 2D Sommerfeld
radiation condition

lim
r→∞ r

1
2

( ∂

∂n
ϕ − ikϕ

)
= 0, (8)

where r = ‖z‖, z ∈ De. This condition ensures that the solution of (6) is an outgoing wave[22].
2.2 Conventional BEM

(6) is usually solved by discretizing the equation and then applying numerical solutions.
As an example of 2D discretization, for convenience, we use constant boundary elements, i.e.,
dividing the boundary Γ into N line segments and placing one node on each segment. After
discretization, we obtain the following linear equations for node i (i = 1, 2, · · · , N):

N∑
j=1

αijϕj =
N∑

j=1

βijqj + bI, (9)

where bI is from incident wave for scattering problem,

αij =
∫

Γj

(∂G(z, zi)
∂n(z)

+ α
∂2G(z, zi)

∂n(zi)∂n(z)

)
dτ − 1

2
δij , (10)

βij =
∫

Γj

(
G(z, zi) + α

∂G(z, zi)
∂n(zi)

)
dτ +

α

2
δij . (11)
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For i 	= j, regular integration methods such as Gauss integration can be used to calculate
αij and βij . For i = j, ∂G(z,zj)

∂nj
|z∈Γj = 0 holds for all elements, αij become hypersingular,

and βij become singular, some special techniques should be used to compute them. Hadamard
finite part integral is applied to compute hypersingular integral while the following integral[23]

is used to calculate the singular integral:

∫ lj
2

0

G(z, zi)dτ =
ilj
8

(
H1

0

(klj
2

)
+

π

2

(
S0

(klj
2

)
H1

1

(klj
2

)
− S1

(klj
2

)
H1

0

(klj
2

)))
, (12)

where S0 and S1 are Struve function, and lj is the length of element j.
By applying the N known boundary conditions, either ϕ or q at each element is known,

and switching the columns in the two matrices in (9), a standard linear system of equations is
formed as follows:

⎛
⎜⎝

a11 · · · a1N

...
...

aN1 · · · aNN

⎞
⎟⎠

⎛
⎜⎝

x1

...
xN

⎞
⎟⎠ =

⎛
⎜⎝

b1

...
bN

⎞
⎟⎠ , or Ax = b, (13)

where A is the coefficient matrix which is full in general and non-symmetric, x is the unknown
vector composing of unknown variables ϕ and q, and b is the known right-hand side vector
computed from the known boundary values.

In conventional BEM, obviously the construction of matrix A requires O(N2) arithmetic
operations, and the size of the required memory for storing A is also O(N2) since A is in
general non-symmetric and dense. Solving the system in (13) by iterative solvers such as the
generalized minimum residue (GMRES) method[24] or the conjugate gradient squared (CGS)[25]

needs O(N2) operations to perform matrix-vector multiplication at each iteration in the con-
ventional way. It is even worse to solve (13) by direct solvers such as Gauss elimination, which
requires O(N3) arithmetic operations. That makes the conventional BEM approach unsuitable
for solving large-scale problems.

3 Multipole expansion of kernel

The fast multipole method can be employed to accelerate the matrix-vector multiplication
for solving (13) by using iterative solvers. The key idea behind the FMM is multipole expansion
of the kernels in which the connection between the collocation point and the source point is sep-
arated, and then the elements-to-element interactions are replaced by cell-to-cell interactions.

The expansion results of the kernel H1
0 are scattered in the references[10,26] and summa-

rized herein for completeness. Based on Graf addition and integral identity for the first kind
Bessel function of integer order, the free space Green’s function of 2D acoustic problems can
be expressed as the multipole expansion in the following, if ‖(z̄i − z̄L)− (z̄ − z̄c)‖ < ‖z̄c − z̄L‖,

G(z̄, z̄i) ≈ i
4L

fk(zi, zL)Tk(zL, zc)gk(zc, z), (14)

where fk = (f0
k · · · f l

k), Tk =

⎛
⎜⎝

T 0
k · · · 0
...

...
0 · · · T u

k

⎞
⎟⎠, gk =

⎛
⎜⎝

g0
k
...

gl
k

⎞
⎟⎠, their entries are
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f l
k(zi, zL) = eik(z̄i−z̄L)·ŝ(βl), (15)

gl
k(zc, z) = eik(z̄−z̄c)·ŝ(βl), (16)

T u
k (zL, zc) =

M∑
m=−M

i−mH1
m(u)eim(θū−βl), (17)

where l = 0, 1, · · · , L − 1 and βl = 2πl
L . fk is related to moment, and gk is the local expansion

coefficient, matrix Tk is the transfer function which converts the far enough element moments
to local expansion.

Integer L and M in (14) and (17) are the truncation number of Graf addition formula and
trapezoidal point number of numerical integral of Bessel integral identity. The integer L and
M , which vary from level to level, are crucial to the memory size, accuracy, efficiency and
stability of diagonal form FMBEM. An intuitive explanation of the source of numerical error
and remarks on truncation number selection were provided[15]. Error analysis of diagonal form
expansion and automatic truncation number selection of M for 2D acoustic problems were de-
scribed in detail in [9, 27]. The “natural selection” of L = 2M + 1 was used in [9–10], which
can make the transfer matrix evaluation fast by using discrete fast Fourier transfer. We gave an
error analysis of numerical integral of Bessel integral identity with the “natural selection”[28].
A semi-empirical formula for truncation length, which is written as M = y +5 log(y +π), where
y is the max cluster’s radius at one level multiplying wave number[29].

4 The fast multipole method-formulation

We review the formulations for M, M2M, M2L, and L2L in this section. Consider the
following integral with kernel H1

0 in (6):

Lij =
∫

Γj

G(z̄, z̄i)qj(z)dτ(z), (18)

in which Γj is the discrete segment of boundary Γ and away from field point zi (see Fig. 2).

Fig. 2 Geometry of FMBEM building blocks: M, M2M, M2L, and L2L
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4.1 Moments (M)
Substituting (14) into (18), we obtain

Lij ≈ i
4L

∫
Γj

fk(zi, zL′)Tk(zL′ , zc)gk(zc, z)qj(z)dτ(z)

=
i

4L
fk(zi, zL′)Tk(zL′ , zc)Mk(zc), (19)

where

Mk(zc) =
∫

Γj

gk(zc, z)qj(z)dτ(z) (20)

are called moments about zc, which are independent of the field point zi and only need to be
computed once. And the entry of vector Mk(zc) is

M l
k(zc) =

∫
Γj

e−ik(z̄−z̄c)·ŝ(βl)qj(z)dτ(z). (21)

After these moments are evaluated, the integral Lij can be calculated readily using (19) for
any field point zi away from segment Γj . in which field point zi and segment Γj should be
separated by a pair of separate clusters centered at zL and zc, respectively.
4.2 Moment-to-moment translation (M2M)

If the point zc is moved to a new location zc′ (see Fig. 2), the following translation holds for
the moment

M l
k(zc′) = e−ik(z̄c′−z̄c)·ŝ(βl)M l

k(zc) (22)

so that

Lij ≈ i
4L

fk(zi, zL′)Tk(zL′ , zc)Mk(zc) ≈ i
4L

fk(zi, zL′)Tk(zL′ , zc′)Mk(zc′). (23)

And the moments about zc′ can be written as

Mk(zc′) = B(zc′ , zc)Mk(zc), (24)

where B(zc′ , zc) is a diagonal matrix with entry Bl
k(zc′) = e−ik(z̄c′−z̄c)·ŝ(βl), which is called

M2M translation for moments when zc is moved to zc′ . Note that a new cluster centered at zc′

should contain segment Γj and be away from that cluster containing the field point zi. This
ensures the existence of (24).
4.3 Moment-to-local translation (M2L)

Incorporate the matrix-vector at the right hand side of (23) and rewrite it as

Lij ≈ i
4L

fk(zi, zL′)Lk(zL), (25)

where

Lk(zL) = Tk(zL′ , zc′)Mk(zc′) (26)

is defined as M2L translation. M2L translation translates the source points contribution from
the source cluster to the field cluster.
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4.4 Local-to-local expansion (L2L)
Supposing zL′ is another cluster’s centroid and also locating in the cluster centered at zL,

the following translation holds for fk

f l
k(zi, zL) = f l

k(zi, zL′)e−ik(z̄L′−z̄L)·ŝ(βl). (27)

We have

Lij ≈ i
4L

fk(zi, zL)Lk(zL) =
i

4L
fk(zi, zL′)Lk(zL′) (28)

and

Lk(zL′) = Dk(zL′ , zL)Lk(zL), (29)

where Dk(zL′ , zL) is also a diagonal matrix with entry Dl
k(zL′ , zL) = eik(z̄L′−z̄L)·ŝ(βl), which is

called L2L translation for local expansion when zL is moved to a new center zL′ .
4.5 Expansion for integrals with derivative kernel

Consider the following derivative kernel in (6):

Mij =
∫

Γj

∂G(z̄, z̄i)
∂n(z)

qj(z)dτ(z), (30)

MT
ij =

∫
Γj

∂G(z̄, z̄i)
∂n(zi)

qj(z)dτ(z), (31)

Nij =
∫

Γj

∂2G(z̄, z̄i)
∂n(zi)∂n(z)

ϕj(z)dτ(z), (32)

in which Γj is also the discrete segment of boundary Γ and away from field point zi (see Fig. 2).
Substituting (14) into (30)–(32), we have

Mij ≈ i
4L

∫
Γj

fk(zi, zL′)Tk(zL′ , zc)
∂

∂n(z)
(
gk(zc, z)qj(z)

)
dτ(z), (33)

MT
ij ≈ i

4L

∫
Γj

∂fk(zi, zL′)
∂n(zi)

Tk(zL′ , zc)gk(zc, z)qj(z)dτ(z), (34)

Nij ≈ i
4L

∫
Γj

∂fk(zi, zL′)
∂n(zi)

Tk(zL′ , zc)
∂

∂n(z)
gk(zc, z)ϕj(z)dτ(z). (35)

The derivative of gk and fk are easy to compute, the corresponding entries of their derivative
are

∂

∂n(z)
gl

k(zc, z) = −ikn̂(z) · Ŝ(βl)gl
k(zc, z), (36)

∂

∂n(zi)
f l

k(zc, z) = ikn̂(zi) · Ŝ(βl)f l
k(zc, z), (37)
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where n̂(∗) is the unit normal vector at fixed point “∗”. Therefore moment of integral MT
ij is

the same as the one of Lij . MT
ij and Nij have the same moment,

M l
k(zc) = −ik

∫
Γj

n̂(z) · Ŝ(βl)e−ik(z̄−z̄c)·Ŝ(βl)ϕj(z)dτ(z). (38)

It can be shown that the M2M, M2L, and L2L translations remain the same for the four
integrals, except for the fact that moments of Mij and Nij should be calculated by (38) and
the final evaluation of MT

ij and Nij should be scaled by ikn̂(zi) · Ŝ(βl).

5 Programming for FMBEM

In this section, we first describe a data structure for constructing the quad tree which can
simplify the implementation of the FMBEM. An analytical moment is then proposed. And
some remarks on technique problem in programming implementation are discussed at the end.
5.1 Data structure

Firstly, we show how to divide a square by quad tree structure. As shown in Fig. 3, the
minimum square which covers the entire boundary is the root of the quad tree and is called as
the cell of level 0. Divide the square into 4 child cells of level 1 whose length is half of that of
the parent cell and number them from left bottom to right top as 0, 1, 2, 3. Continue dividing
in this way, i.e., dividing all the cells in level L into 4 equal child cells will generate 22(L+1) cells
of level L + 1 and number them as 0, 1, · · · , 22(L+1)−1. Stop dividing until certain condition
is reached. A cell having no child cells is called a leaf.

Fig. 3 Quad tree discretization

After discretization, a quad tree which enables search from leaf to root and also from root to
leaf can be constructed by the cell number. Define a nonnegative integer a divided by a nature
number b as a/b = [a/b] + (a/b), where [a/b] is the quotient and (a/b) is the remainder. For a
cell numbered as m at level L, its parent cell number pm at level L − 1 is defined as

pm = [[m/2L]/2] · 2L−1 + [(m/2L)/2]. (39)

While the start number cs
m and end number ce

m of its child at level L − 1 are defined as

cs
m = [m/2L] · 2L+2 + (m/2L) · 2, (40)

ce
m = [m/2L] · 2L+2 + 2L+1 + (m/2L) · 2 + 1. (41)

Thus, the quad tree structure can be described by an array in the computer, as shown in Fig. 4.
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Fig. 4 Array-data structure for quad tree

5.2 Analytical moment
To calculate the moment on the element which in essential is the line integration, several nu-

merical methods are ready to use, such as Gauss integral. While we find the moment calculation
for constant element can be done analytically which can somewhat improve the performance
of diagonal FMBEM. Since the unit direction n̂(z) of a constant element is also a constant, we
just need to derive the expression of the moment for Lij and MT

ij , moment of Mij and Nij is
similar to that of Lij and MT

ij with difference by a factor −ikn̂(z) · Ŝ(βl) and replacement of
q(z) with ϕ(z).

To get the analytical moment, firstly, we need to define a way in which we can pass from the
global Cartesian coordinates to the local coordinates defined over the element. Suppose two
end nodes of element j are z̄j and z̄j+1. By using local coordinates, the coordinates of point
z̄ = [x y] on element j can be expressed as

z̄ = [xj+1 − xj yj+1 − yj]ξ + [xj yj] = Nξ + z̄j , (42)

where N are 2D vectors defined by (42), ξ = ‖z̄− z̄j‖/Lj, and Lj is defined by Lj = ‖z̄j+1− z̄j‖.
Substituting (42) into (21), we have

M l
k(zc) = Ljqjeik(z̄c−z̄j)·Ŝ(βl)

∫ 1

0

e−ikN ·Ŝ(βl)ξdξ. (43)

If N · Ŝ(βl) is not equal to zero, which means the vector N is not perpendicular to vector Ŝ(βl),
we have

M l
k(zc) =

Ljqj

ikN · Ŝ(βl)
(1 − e−ikN ·Ŝ(βl))eik(z̄c−z̄1)·Ŝ(βl). (44)

If N · Ŝ(βl) is equal to zero, we have

M l
k(zc) = Ljqjeik(z̄c−z̄j)·Ŝ(βl). (45)

The analytical moment derivation is direct without loss of accuracy. It is no doubt that
computing moment by the analytical way is more accurate, stable and efficient than numer-
ical integral method. Although analytical moment derived here is for constant element, the
analytical moment for linear element is ready to get.
5.3 Interpolation

Because the trapezoidal point number L depends on the quad tree cell size, it increases at
upward pass and decreases at downward pass. Interpolation is needed to compute moment at
lower levels from calculated moment at higher levels, and to compute local expansion in the
inverse way of moment computation. It is easy to get from (21) that the moment of diagonal
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FMBEM is actually a function of angle β in the range from 0 to 2π. By using Jacobi-Anger
expansion, moments can be written as

Mk(zc) =
∞∑

n=−∞
aneinβ , (46)

where an =
∫
�Γ

inJn(k‖z̄ − z̄c‖)einβdτ(z). Since |J|n|(x)| is a strictly decreasing function with
respect to |n| for fixed x. If |n| > x, |J|n|(x)| ∼= 0 when |n| > N supposing N is a large
enough truncation number. That means moments can be treated as band limited function with
acceptable error. To get the coefficient an(|n| � N), we perform Fourier transform with respect
to the computed moments. Once all the coefficient an(|n| � N) are calculated, moments
at any other point β′ can be easily calculated using (46) for |n| � N . That is the idea of
uniform resolution interpolation[30] and also the method we used in this paper. Since the
transform function is a band limited function of angle β and local expansion is the product
of moment and transform function, uniform resolution interpolation is also used in downward
process.
5.4 Preconditioning and storing coefficients

Sharp corners, high frequency and so on may cause ill conditions of the linear systems
appearing in the BEM. Therefore, preconditioning is necessary to the solution using an iterative
solver (GMRES). In this paper, we adopt block diagonal preconditioning which uses a list of
elements contained inside childless cell in the quad tree. Since the preconditioning matrix is
sparse, we calculate the preconditioning matrix once and store it for all iterations in the solution
of FMBEM. This also provides an option to reuse the coefficients in the direct evaluation of
downward process[12–14].

6 Numerical examples

The algorithm is implemented in Fortran 90 and tested on a computer with an Intel Dual
Core 2.2 GHz CPU, 2 GB RAM. Constant triangular elements are used in our study, for which
one can evaluate the singular integrals analytically. The GMRES solver is applied to solve the
FMBEM and the tolerance is set to 10−4.
6.1 Scattering from rigid cylinder

As an example to test the accuracy of the program, we compute acoustic wave scattered
by an infinite rigid cylinder of radius a with a plane incident wave of unit amplitude travelling
along the positive x axis (θ = 0) in a direction perpendicular to the axis of the cylinder.
The characteristic length (CL), defined by wave number multiplying side length of minimum
square containing the model, of infinite cylinder is equal to 5. Sample filed points are evenly
distributed on a circle of r = 2a, as shown in Fig. 5. Exact field pressure at point (r, θ) is
given as[31]

ϕ(r, θ) = −
∞∑

m=0

εmim
Jm′(ka)
H1

m′(ka)
H1

m(kr) cos(mθ), (47)

where εm is Neumann constant, “′” means derivative with respect to ka, Jm is the mth Bessel
function of the first kind. The field pressure plotted in Fig. 6 shows that the accuracy of the
program.

Since acoustic scattering problems are frequency dependent, to further demonstrate that
the program is accurate for a wide range of frequencies, another example for the rigid cylinder
scattering with varying frequencies is performed. The CL of the model is increasing from
6 to 60, the corresponding boundary element numbers used in the simulation are listed in
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Table 1. Boundary solutions given by FMBEM and analytical way are compared. Relative
errors listed in Table 1 are defined in L2 sense with respect to analytical solutions. In Table 1,
DOF means boundary element number, Trel means the lowest tree level, Iter means the number
of iterations, RPD and NPD means solution with right preconditioning and no preconditioning
respectively.

Fig. 5 Field pressure contour plot for
scattering of rigid cylinder

Fig. 6 Field pressure given by analytical and
FMBEM

Table 1 Results of rigid cylinder scattering with varying frequency

CL DOF Trel
Iter

Relative error
RPD NPD

6 4 000 4 6 15 2.593 0E–4

12 12 700 6 9 21 5.439 3E–4

18 22 400 6 12 24 1.692 7E–4

24 32 100 6 16 31 6.916 5E–4

30 51 500 7 21 41 7.856 9E–4

36 61 200 7 24 44 2.799 6E–4

42 70 900 7 27 55 3.092 2E–4

48 80 600 7 28 57 1.683 3E–4

54 90 300 7 30 70 3.070 8E–4

60 100 000 8 34 79 1.651 3E–4

6.2 Scattering from multi-cylinders
FMBEM with right preconditioning is applied to compute the acoustic scattering by multi-

cylinders with a plane incident wave of unit amplitude travelling along the positive x axis (θ = 0)
as shown in Fig. 7. The multiple scattering model contains 300 random located cylinders in
a square. The field is meshed with 29 004 2D triangular elements. The characteristic length
of this model is 40. Maximum element allowed in a leaf is set to be 70. The boundary and
filed pressure solutions are all computed by the FMBEM. Analytical field solution of this model
is not available. Theoretically, increasing the element number in the boundary discretization
will make the field solution converge to the exact solution. Field solution with boundary dis-
cretized with 210 000 elements is plotted in Fig. 7, and taken as a benchmark solution to explore
the accuracy of the program in the complex model solution. Relative errors with respect to
the benchmark solution in L2 sense are evaluated and plotted in Fig. 8. Obviously, Figure 8
demonstrates the convergence of refining the boundary mesh, and implicates the accuracy of
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the algorithm. The CPU time used in boundary solution (FMBEM) and filed pressure evalu-
ation (FMFE) by the fast multipole method, as well as the field pressure evaluation by direct
method (DFE) are plotted in Fig. 9, which shows the computing efficiency of the FMBEM for
large scale acoustic problems solution.

Fig. 7 Field pressure contour plot of multi-cylinders scattering

Fig. 8 Relative errors of different discretiza-
tion with respect to benchmark solu-
tion

Fig. 9 CPU time used in boundary solution
and filed evaluation of different dis-
cretization

6.3 Radiation of vibrating rail
Railway is entering an era of higher speed. The noise generated by rails due to the impact

of wheels and rails is significant at high speed. The sound radiation from a vibrating rail
can be predicted using a two-dimensional model under certain conditions: (i) The structural
wavelength in the rail is much longer than the wavelength of sound in air at the same frequency,
and (ii) the decay of vibration with distance along the rail is small. If condition (ii) is not
satisfied, two-dimension rail mode is still appropriate if the boundary value is selected at the
force point. To simplify that, we simulate the sound radiation of harmonic respond. The
boundary value generated by harmonic force applied on the top line of rail model is firstly
computed by a third party CAE program. Then we use the FMBEM to simulate the sound
radiation of the vibrating rail based pm the computed boundary value as shown in Fig. 10. The
characteristic length of rail model is 25. The rail is meshed with 22 956 line elements and its
field is meshed with 32 817 triangular elements. The total time used for boundary solution and
field evaluation is 88.83s. The simulation results are summarized in Table 2.
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Table 2 Results of simulation
Case Rail radiation Case Rail radiation Case Rail radiation

CL 25 RPD
Iter 55 Field DOF 32 817

DOF 22 956
CPU time 42.62 Field Trel 7

Model Trel 6 NPD
Iter 122 FMFE CPU time 46.21

CPU time 92.87 DFE CPU time 1 962.26

Fig. 10 Radiation of vibration rail

7 Discussion

This paper presents the FMBEM for 2D acoustic wave problems. The kernel function ex-
pansion theory is summarized. An analytical expression for moment computation is derived
which is more accurate, stable, and efficient. A data structure is proposed which can simplify
the quad-tree construction. Formulations and implementation details are also provided which
can help readers to understand the 2D acoustic FMBEM.

Numerical examples of acoustic scattering by an infinite cylinder with a hard surface in-
cidenced by a plane wave are investigated to demonstrate the accuracy. The applications of
FMBEM in solving multi-cylinder scattering and simulating the vibrating rail radiation further
demonstrate the efficiency as well as the accuracy of the FMBEM. Since the larger the CL or
the more complicated the model, the more ill-conditioned the corresponding linear equations
is, preconditioning is very important in the iteration solution. We used right block diagonal
preconditioning in this paper. Results listed in tables show that preconditioning can make great
improvement compared with solution without preconditioning. Although preconditioning re-
duces the iteration number for large CL and complicated model, the time used for one iteration
is more than that of solution without preconditioning because preconditioning will take extra
time for matrix inverse process.

Since diagonal FMBEM is not stable for small CL, for fixed CL the element number allowed
in a leaf should increase with respect to the element number of the model. The memory used for
storing direct coefficients and time for preconditioning will also increase. A method combined
the adaptive FMBEM and wideband FMBEM which is suitable for a wide range CL is under
development.
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