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Analyzing Acoustic Radiation
Modes of Baffled Plates With
a Fast Multipole Boundary
Element Method
In the analysis of an acoustic radiation mode of a baffled plate, Rayleigh integral with free
space Green’s function is involved. The boundary element method (BEM) is one of the
approaches to compute its modes and radiation efficiencies. In this paper a fast multipole
BEM in conjunction with an iterative solver based on the implicit restart Arnold method is
proposed to efficiently and accurately evaluate acoustic radiation modes and efficiencies.
Even though a 3D free space Green’s function is used here, a quad tree is used for the
hierarchical tree structure of the boundary mesh instead of an oct tree, which can speed up
the fast multipole BEM. Similar to the analytical integration of moment evaluations, the
analytical integration is also employed to compute the local expansion coefficients which
further improves the efficiency of the fast multipole BEM for the analysis of an acoustic
radiation mode of baffled plates. Comparison between numerical and theoretical radiation
efficiencies of a baffled circular plate vibrating as a piston shows that the fast multipole
BEM proposed here can give results with very good accuracy. The computation of the
eigenvalues and eigenvectors of a baffled rectangular plate further reveals the efficiency in
CPU time, smaller memory size, and accuracy of the fast multipole BEM in the analysis of
an acoustic radiation mode. [DOI: 10.1115/1.4007023]
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1 Introduction

Radiation power is the quantity widely used in active noise con-
trol, sources reconstruction, and acoustic design optimization. The
radiation power of a baffled vibrating structure can be calculated
by the Rayleigh integral [1] which consists of two steps, one is to
determine the acoustic pressure first by boundary element method
(BEM), and the other is to sum the acoustic pressure and normal
velocity product over a close boundary. It is time consuming in
the engineering application. An acoustic radiation mode was first
proposed by the motivation of representing any boundary normal
velocity using linear superposition of a set of orthonormal velocity
patterns on the boundary, and then to evaluate the radiation power
by using velocity patterns.

Cunefare [2] presented a technique for deriving the optimal sur-
face velocity distribution on the surface of a finite baffled beam,
in which the surface velocity was expanded in the unknown modal
amplitude coefficients. Later, Cunefare and Currey [3] explored
the convergence, upper bound on radiation efficiencies, and the
sensitivity of the acoustic modes’ radiation efficiencies to small
perturbations. The term “radiation modes” was introduced first by
Cunefare in his Ph.D. dissertation [4]. Elliott and Johnson com-
pared two formulations, one was based on structure modes and the
other was in terms of acoustic modes, for calculating the total
acoustic power radiated by a structure in Ref. [5]. Chen and Gins-
berg [6] developed a method to analyze submerged bodies’ acous-
tic interaction using radiation modes. Snyder and Tanaka [7]
calculated the total acoustic power output of a baffled rectangular
using the modal radiation efficiencies.

Fahnline and Koopmann [8] proposed a lumped parameter
model for the acoustic output from a vibrating structure. It was
based on the Kirchoff-Helmholtz equation with Neumann bound-
ary conditions and assumed that each of the boundary elements
vibrates as a piston. Actually, the underlying theory is similar to
methods using the BEM with a constant element. In the evaluation
of entries of the impudence matrix, Taylor series were employed
to the kernel about the geometrical centers of each element and
truncating all but the lowest-order (monopole) terms. In the sec-
ond of their series papers [9], the lumped parameter model was
implemented numerically by requiring the boundary condition for
the normal surface velocity to be satisfied in a lumped parameter
sense. Arenas [10] applied the lumped parameter model to com-
pute the sound radiation from planar structures which was based
on the surface velocity information and a direct numerical evalua-
tion of the radiation resistance matrix of the structure.

As remarked in Refs. [9,10], one disadvantage of the method
was the amount of computational time spent in solving the system
of equations for the source amplitudes. This is a general restraint
in methods involving the BEM. Thanks to the development of the
fast multipole method (FMM) pioneered by Rokhlin [11] and
Greengard [12], FMM can dramatically reduce the matrix vector
product from O(N2) to O(NlogN), and memory from O(N2) to
O(N) with N being the number of boundary elements in the model
surface discretization. Fast multipole BEM, one of the FMM
applications in the BEM, has been proved very efficient in acous-
tic wave problem solutions recently [13–26]. An elaborate review
of the fast multipole acerbated BEM up to 2002 was made by
Nishimura in Ref. [27]. More information about the fast multipole
BEM in general can be found in the first textbook [28].

Similar to the fast multipole boundary element method
(FMBEM) developed for acoustic wave problems, the FMM is
now being extended to an acoustic radiation mode analysis as well
as a sound power radiation computation. Consequently, a fast
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multipole BEM is developed for an acoustic radiation mode anal-
ysis of baffled plates, which is implemented in conjunction with
one iterative eigenvalue solver, the implicit restart Arnold method
(IRAM) [29].

The rest of the paper is organized as follows: Acoustic radiation
mode theory of baffled plates is reviewed in Sec. 2. The formula-
tions of the fast multipole BEM for the analysis of an acoustic
radiation mode are described in Sec. 3. Then, the fast multipole
BEM algorithm and some remarks concerning the program imple-
mentation are made in Sec. 4. Several numerical examples are
performed in Sec. 5 to demonstrate the accuracy and efficiency
of the proposed fast multipole BEM in the analysis of acoustic
radiation modes of baffled plates. Section 6 gives a conclusion of
this paper.

2 Acoustic Radiation Mode Theory

To represent the sound power radiation of a vibrating structure
by a set of independent velocity patterns on the surface of the
structure, a radiation operator which relates velocity on the bound-
ary to the sound power needs to be built. We review here the basic
theory used to generate the radiation operator. Consider a struc-
ture with a boundary S excited harmonically in a homogeneous
isotropic acoustic medium. A normal velocity v and sound pres-
sure u on the boundary S are produced by the harmonic force
applied on the structure. The sound power radiated by the struc-
ture can be evaluated by taking the real part of the integral of the
sound intensity over the boundary of the structure

W ¼ 1

2
Re

ð
S

u xð Þv xð Þ�dS xð Þ (1)

where the asterisk indicates the complex conjugate for scalar vari-
ables and complex conjugate transpose for vectors and matrices,
and x is a point on the boundary.

The Rayleigh integral is an approximate method to represent
the boundary sound pressure in terms of boundary velocity for a
group of vibrating structures which can be assumed flat or near
flat and baffled by an infinite plate. Sound pressure at a boundary
point x is expressed as

u xð Þ ¼ � 1

c xð Þ kqc

ð
S

iG x; yð Þv yð ÞdS yð Þ (2)

in which c xð Þ is a constant that depends on the geometry of the
structure at point x, c xð Þ ¼ 1=2 if the surface around point x is
smooth. The free space Green’s function G x; yð Þ for 3D problems
is given by

G x; yð Þ ¼ eik x�yj j

4p x� yj j (3)

where k is the wave number and q and c stand for the mass den-
sity and speed of sound of the acoustic fluid medium, respec-
tively. Note that in this paper the time convention is assumed as
e�ixt and v yð Þ in Eq. (2) is the normal velocity at point y on the
boundary.

2.1 Rayleigh Radiation Operator. The Rayleigh integral
expresses the transformation from the structure surface velocity to
the boundary sound pressure, which can be used directly to build
a radiation operator. Since we aim to obtain the sound power by a
set of independent velocity patterns on the surface, replacing u xð Þ
in Eq. (1) by Eq. (2) produces

W ¼ � kqc

2
Re

ð
S

ð
S

1

c xð Þ v yð ÞiG x; yð Þv xð Þ�dS yð ÞdS xð Þ
� �

(4)

Use the identity Re af g ¼ aþ a�f g=2, trade x for y in the second
integral, and further simplify Eq. (4) by using the reciprocity of
the Green function and the relationship i G� G�ð Þ ¼ �2GI , where
GI is the imaginary part of the Green’s function. Consequently,
Eq. (4) can be reformulated as

W ¼ kqc

2

ð
S

ð
S

1

c xð Þv xð Þ�GI x; yð Þv yð ÞdS yð ÞdS xð Þ (5)

To evaluate Eq. (5) we consider the normal velocity being a vec-
tor v which belongs to a linear vector on the boundary S. The
length of vector v represents the number of elements of the discre-
tized acoustic modes. How many discretized elements used to
mesh the surface and which type of element chosen to represent
the velocity distribution on an element are crucial to the conver-
gence of the eigenstate analysis of the radiation operator and the
accuracy of the evaluation of sound power radiation. Theoreti-
cally, the more elements used in the discretization, the more
accurate the solution will be. Drawbacks are the high cost in the
CPU time and memory requirement of using a large number of
elements. CPU time and memory requirement essentially restrict
the discrete representation of the radiation operator based on the
conventional BEM (CBEM), especially for large-scale structure
problems. But these drawbacks associated with CBEM are
removed now by using the fast multipole BEM which will be
described in Sec. 3.

A constant triangular element is adopted in this paper, which
assumes that the sound pressure and structure velocity are con-
stants on an element. The primary benefit of using the constant
element is the convenience in implementation of the fast multi-
pole BEM algorithm. Furthermore, the shortcoming in the accu-
racy of adopting the constant element can be easily eliminated by
using more elements in the boundary mesh due to the high solu-
tion efficiency of the fast multipole BEM. Supposing that N is the
number of elements in the boundary discretization, correspond-
ingly c xð Þ ¼ 1=2, we have

W ¼ v�Rv (6)

in which R is named the radiation operator based on the Rayleigh
integral, whose entries are defined as

rij ¼ kqc

ð
DSi

ð
DSj

GI x; yð ÞdS yð ÞdS xð Þ; for i; j ¼ 1; 2;…;N (7)

in which DSi and DSj indicate the elements i and j, respectively. It
is easy to conclude from Eq. (7) that R is a real and symmetrical
matrix by using reciprocity principle of the Green function. The
sound power radiation of a vibrating plane should be positive.
Any nonzero vector v in Eq. (6) must result in a positive value.
Therefore, R is a positive definite matrix.

Note that in some literatures, such as Ref. [5], the mean value
theorem of integral is employed in the evaluation of Eq. (7) by

treating GI as a slowly varying function on element pairs (i,j).

Therefore, rij ¼ kqcGI xi; yj

� �
DSiDSj with xi, yi being the centers

of elements i and j, respectively, and DSi, DSj being areas of the
two elements. In the fast multipole BEM, faraway enough element
pairs (i,j) are computed efficiently by using the FMM, and only a
few of close element pairs (i,j) needed to be evaluated directly, we
adopt the Gauss quadrature method to compute Eq. (7) for close
element pairs (i,j), and the FMM to evaluate Eq. (7) for faraway
enough element pairs (i,j).

2.2 Modal Analysis of Radiation Operator. The Rayleigh
radiation operator is real, symmetrical, and nonsingular, which
can be used to diagonalize the calculation of sound power radia-
tion. The eigenvalues and corresponding eigenvectors of the oper-
ator R are denoted by ki and ui, which satisfy
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Rui ¼ kiui; for i ¼ 1; 2; :::;N (8)

Based on the theorem of a positive definite matrix, operator
R must have N positive eigenvalues ki, which can be ordered as
k1 > k2 > � � � > kN > 0. The corresponding normalized eigen-
vectors ui represent the velocity patterns, termed as acoustic radi-
ation modes, which span the velocity distribution on the structure
surface. Therefore, arbitrary velocity distribution v on the bound-
ary can be expanded in terms of the acoustic radiation modes as

v ¼ ub (9)

where U is a unitary matrix formed by eigenvectors and b repre-
sents a vector of modal participation coefficients with entries
defined as bi ¼ v�ui. Substituting Eqs. (9) and (8) into Eq. (6)
leads directly to a simple and compact expression of the sound
power radiation

W ¼
XN

i¼1

ki bij j2 (10)

In the computation of radiation power by Eq. (10), the boundary
velocity patterns are divided into effective and ineffective compo-
nents, which correspond to eigenvalues with large and small mag-
nitudes, respectively. Therefore, to compute the sound power
radiation by the modal expansion method, the eigenvalues with
largest magnitude and corresponding eigenvectors are preferred.
Since the number of eigenvalues needed to compute radiation
power within a given tolerance is rarely small by comparing with
the number of degrees of freedom (total number of boundary ele-
ments) of the discrete linear system, only a few eigenvalues with
largest magnitude and corresponding eigenvectors are requested
in the eigenvalue=eigenvector computation of the operator R. As
a rule of thumb, computation of the largest six in low frequency
and a few more in higher frequency is necessary. The ith eigen-
value is also referred to as a variable which is proportional to radi-
ation efficiency of the ith velocity pattern, which is defined by

ri ¼
2ki

qc
(11)

Radiation efficiency (or eigenvalue) and velocity pattern (or
eigenvector) are two characteristics of the radiation operator,
which will be investigated in this paper by using the fast multipole
BEM.

3 Fast Multipole Boundary Element Method

As shown in Eq. (7), entries of matrix R are regular without
involving any singular integration which can be easily and accu-
rately integrated by using the Gaussian quadrature twice. Since
the integration is required for every pair of elements, the disad-
vantage of expensive computational time will appear especially
for large-scale models. This cost can be reduced somewhat by
exploiting the symmetry of the radiation operator, but it will still
require a large amount of computational time. In addition to time
cost, memory requirement for storing the matrix R is another
defect that prevents the direct numerical method in the computa-
tion of acoustic radiation efficiencies and modes.

FMM is one of the algorithms which can accelerate the matrix
vector multiplication as well as reduce the memory requirement
dramatically. Employing the fast multipole BEM in the iterative
solution of eigenvalues and eigenvectors, matrix R is not com-
puted explicitly but the product of R and trial velocity is supplied
to an iterative solver, such as IRAM. In this section we will
describe the computation of contributions from all faraway
enough elements to a field element i by the fast multipole BEM.
Keep in mind that the contribution from an element can be added

to a field element i by the fast multipole BEM only if the element is
faraway enough from the field element in the sense of tree structure.
In light of Eq. (6) and using the fast multipole expansion of the ker-
nel based on a plane wave expansion [30], contribution from all far-
away enough elements to the field element i is described by

/i ¼ kqc Im
ik

16p2

ð
r1

"ð
DSi

I r
_
; x; xc

� �
dS xð ÞT r

_
; xc; yc

� �(

�
ð

DSj2Fi

O r
_
; yc; y

� �
v yð ÞdS yð Þ

#
dr

)
(12)

for x� xcj j < y� xcj j and y� yc

�� �� < x� yc

�� ��, where xc is an
expansion point near x and yc is that near y, Im means imaginary
part of a complex variable, Fi is a set of all elements far away
from the element i in the sense of tree hierarchical structure. The
inner, translation, and outer functions in Eq. (12) are defined by

I r
_
; x; xc

� �
¼ eik x�xcð Þ�r_ (13)

T r
_
; xc; yc

� �
¼
X1
l¼0

il 2lþ 1ð Þh 1ð Þ
l ktð ÞPl t

_

� r_
� �

(14)

O r
_
; yc; y

� �
¼ eik yc�yð Þ�r_ (15)

respectively, where t ¼ xc � yc

�� �� and t
_

¼ xc � yc

� �	
t, Pl is lth

order Legendre function, and r
_ ¼ sin h cos /; sin h sin u; cos hð Þ in

which h and / are polar coordinates of point r on the unit sphere
r1. It should be noted that the series appearing in Eq. (14) is diver-
gent. In the numerical evaluation the series should be truncated
properly. Lots of studies were devoted to analyses of the trunca-
tion error and approaches of selecting the proper truncation num-
ber [31–33]. An empirical method was proposed in [34] and was
validated that it can give a good truncation number selection.

Moments for a cell centered at yc, containing a set of elements
X, are defined by

M r
_
; yc

� �
¼
X
j2X

ð
DSj

eik yc�yð Þ�r_ dS yð Þ (16)

The moments of all cells are computed by the upward pass which
traces the tree from bottom to top. After obtaining the moments of
cells, the local expansions for one cell centered at xc are evaluated
by collecting the moments of its well-separated cells and transfer-
ring the local expansions from its parent cell. These well-
separated cells of one cell are noted as the interaction list ‘, the
moment of all cells in a cell’s interaction list are converted to the
local expansions of the cell through

L r
_
; xc

� �
¼
X
yc2‘

T r
_
; xc; yc

� �
M r

_
; yc

� �
(17)

for x� xcj j < y� xcj j and y� yc

�� �� < x� yc

�� ��, in which x is a
field point located in the local cell whose center is xc, y is the
source point located in one of the cells in the interaction list
whose center is yc. Because the sample points on the unit sphere
are varying from level to level, the upward and downward passes
in the multilevel FMM are separated into two parts. First, in the
upward pass the moments are temporarily shifted from the child
level to the parent level. Conversely, in the downward pass the
local expansions are temporarily shifted from the parent level to
the child level. They are computed, respectively, by

~M r
_
;yc0

� �
¼ eik yc0 �ycð Þ�r_M r

_
;yc

� �
; for y� yc0

�� ��< x� yc0

�� �� (18)

~L r
_
; xc0

� �
¼ eik xc�xc0ð Þ�r_L r

_
; xc

� �
; for x� xc0j j < y� xc0j j (19)
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in which yc0 and xc0 are centers of cells in the parent level and
child level, respectively. Second, interpolations are performed
over a spherical surface for temporary moments and local expan-
sions in upward and downward passes, respectively, to reconstruct

the final moments M r
_
; yc0

� �
and local expansions L r

_
; xc

� �
.

In the downward pass, when a leaf containing the element i is
reached, the final evaluation of contributions from all faraway
enough elements to the element i is computed by

ui ¼ kqc Im
ik

16p2

ð
r1

ð
DSi

I r
_
; x; xc

� �
dS xð ÞL r

_
; xc

� �
 �
dr

� �
(20)

To reconstruct the contributions from all elements, the direct
numerical method is still needed to aggregate the contributions
from elements contained in the adjacent cell.

4 Fast Multipole BEM Algorithm

With all the formulations introduced in Sec. 3, we are ready to
construct the fast multipole BEM algorithm for the analysis of an
acoustic radiation mode. The FMM method used here is a variation
of the algorithm presented in Ref. [26]. An iterative solver based on
the implicit restart Arnold method is adopted in the eigenvalues cal-
culation in which the product of matrix R and trivial velocity v is
computed by the fast multipole BEM at each iteration. In this sec-
tion two remarks on tree selection and analytical integration of
moments and local expansion coefficients are made first. Then the
main procedures of the algorithm are briefly described.

For the mode analysis of a baffled plate with the fast multipole
BEM, usually an oct tree is used for the model, as shown in
Fig. 1(a). Even though the kernel of the Rayleigh integral is a
three-dimensional free space Green’s function, we use a quad tree
for the BEM model instead of an oct tree, which is permitted by
rotating and moving the coordinate system to let the z axis of the
new system be parallel to the normal direction of the plane, as
shown in Fig. 1(b). Two benefits are achieved with this operation.
First of all, it is easier to obtain the tree structure for the model by
using a quad tree than an oct tree, as well as trace up and down in
the moment and local expansion passes. Another benefit is related
to the program optimization. M2L transformation is the most ex-
pensive part in the downward pass and at most 189 M2L transla-
tions are computed for a cell. Computing those translators once
and storing them for reuse can greatly improve the efficiency of
M2L. But there are 316 possible relative positions between a cell
and its interaction cell at one level in an oct tree structure. That
means the translators corresponding to the 316 possible relative
positions need to be computed and stored. There are only 40 pos-
sible relative positions between a cell and its interaction cell in a
quad tree structure, which can reduce the memory for storing the
translators at one level.

In the final evaluation Eq. (20), one more integration over a
field element for sample points on the unit sphere appears. This
integration does not exist in the solution of acoustic radiation and
scattering problems with the usual fast multipole BEM. Since an
analytical integration of moments was proposed in Ref. [26] and
significant improvement in solution efficiency was achieved, the
integration over a field element is no more than applying the ana-
lytical integration, same to the moments integration, one more
time. It is permissible because the outer function is in essence a
complex conjugate of the inner function as indicated by Eqs. (13)
and (15), so that without modification the subroutine for analytical
moments integration is readily used to compute the local expan-
sion coefficients.

The main procedures of the algorithm are as follows:

Step 1. Initialization and obtain the tree structure: In this step
set the number of eigenvalues and corresponding eigenvector
needed to be computed first. Rotate and move the frame to let

the z axis of the new frame be parallel to the normal direction of
the plate. Then determine the quad tree structure of the mesh by
dividing the model into a smaller and smaller group until the con-
dition, either the depth of the tree or the maximum number of ele-
ments allowed in a leaf, is reached.

Step 2. Upward pass: Calculate the moments of all cells from
bottom to level 2. At one level, first extrapolate the temporary
moments, collecting from children cells, of a nonleaf cell to fit the
sample points at this level. For a leaf cell, moments are evaluated
by Eq. (16) and converted to the temporary moments by Eq. (18).
Those temporary moments are added to its parent cell.

Step 3. Downward pass: Calculate the local expansions of all
cells from level 2 to bottom level. At one level, first interpolate
the temporary local expansion, transferring from its parent cell, of
a nontop level cell to fit the sample points at this level. For a cell,

Fig. 1 Tree structure of a plate model by using (a) an oct tree
and (b) a quad tree
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transfer moments of all cells in its interaction list and add them to
its local expansions by Eq. (17). If the cell is not a leaf, its local
expansions are converted temporarily to its children cells by
Eq. (19). In this downward pass, if a leaf is reached, the contribu-
tions from all faraway enough elements to an element i contained
in the leaf are evaluated by Eq. (20). Contributions from elements
contained in the adjacent cell are computed by the direct numeri-
cal method and added to the element i.

Step 4. Iteration of the eigenvalues searching: The product of
matrix R and trivial velocity v is supplied to an IRAM solver to
compute the eigenvalues=eigenvectors. If the number of eigenva-
lues=eigenvectors computed or the iteration times used does not
reach the specified number, update v and go back to step 2. Other-
wise, solution is done.

The algorithm described here is based on a normal quad tree
structure. The adaptive tree algorithm presented in Refs. [23,25]
can be adopted to further improve the M2L computation effi-
ciency, in which the interaction list is divided into three groups.

5 Numerical Examples

The algorithm presented in this paper for mode analysis of the
acoustic radiation operator is implemented into a compute coder.
The IRAM will add an eigenvalue in the iteration eigenvalue
searching if the residue is below the tolerance of 10�5. All
the computations were done on a desktop PC with a 64-bit Intel

VR

CoreTM2 Duo CPU and 6 GB RAM, but only one core is used in
the computation.

5.1 Validation of the Algorithm. Before the code can be
used with confidence, accuracy of the algorithm should be veri-
fied. Because analytical formulation of the radiation efficiency
is available, the radiation efficiency of a baffled circular plate
is selected to explore the accuracy of the fast multipole BEM
proposed in this paper. The acoustic radiation efficiency of a
vibrating structure with normal boundary velocity v is defined as

r ¼ W

qc
Ð

S v xð Þ2dS xð Þ
.

2
(21)

Supposing the baffled circular plate is vibrating like a rigid piston
with a constant velocity, and its radius is a, the radiation effi-
ciency is defined by [35]

r ¼ 1� J1 2kað Þ
ka

(22)

Theoretical radiation efficiency is evaluated by Eq. (22), and nu-
merical radiation efficiency is calculated according to Eq. (21)
with W being computed by the fast multipole BEM. Since the fast
multipole BEM adopted in this paper is a diagonal one, numerical
instability will happen if ka is too small [36,37]. On the other
hand, if ka is too small, very few elements are needed to discretize
the boundary, which may be solved more efficiently by the con-
ventional BEM than the fast multipole BEM. So in this study, the
radiation efficiency for the baffled circulate plate are evaluated at
relatively high frequencies with ka from 0.5 to 30. The number of
elements (DOFs) are listed in Table 1. The sole restriction in the
discretization is to avoid the numerical instability for the lower ka
cases. There is no doubt that the number of elements chosen in the

simulation is larger than the empirical rule six boundary elements
per wavelength. The quad tree levels (TreLev) used in the model
hierarchization are also included in Table 1.

The radiation efficiencies calculated by the fast multipole BEM
and theoretical formulation are plotted in Fig. 2(a) and the relative
errors defined by FMBEM� Theoreticalj j= Theoreticalj j are plot-
ted in Fig. 2(b). As depicted in Fig. 2, the numerical results agree
very well with theoretical results. The tendency for relative errors
goes up with ka increasing at a certain range as shown in
Fig. 2(b). It does explain that the boundary discretization in acous-
tics should depend on the nondimensional wave number ka.

5.2 Modal Analysis of a Baffled Rectangular Plate. After
the accuracy verification, in this section the fast multipole BEM is

Table 1 Number of elements for different ka used in the FMBEM

ka 0:5; 1½ � 1; 2ð � 2; 5ð � 5; 10ð � 10; 20ð � 20; 30ð �
DOFs 694 904 2402 4544 8012 11272
TreLev 2 3 4 5 5 5

Fig. 2 (a) Radiation efficiency of a baffled circular plate calcu-
lated numerically and theoretically and (b) the relative errors

Table 2 The first six eigenvalues and relative errors

Eigenvalues Eigenvectors

Modes FMBEM Direct Relative error Relative error

Mode 1 4.7978� 10�2 4.7978� 10�2 6.2528� 10�9 2.5208� 10�7

Mode 2 3.0495� 10�2 3.0495� 10�2 1.6396� 10�8 7.4120� 10�8

Mode 3 1.4138� 10�2 1.4138� 10�2 5.6583� 10�8 3.5601� 10�7

Mode 4 5.6936� 10�3 5.6936� 10�3 1.1943� 10�7 7.0494� 10�7

Mode 5 5.3770� 10�3 5.3770� 10�3 2.1201� 10�7 4.4989� 10�7

Mode 6 6.9162� 10�4 6.9162� 10�4 1.0700� 10�7 1.1662� 10�7
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combined with the iterative solver IRAM to compute the modes
and corresponding radiation efficiencies of a baffled rectangular
plate. The usage of a rectangular plate to produce sound in engi-
neering is widespread. A large body of research has been devoted
to their study. Since the physical explanations of the modes and
radiation efficiencies have been intensively explored, here we just
focus on the CPU time, memory, and accuracy given by the fast
multipole BEM. The ratio of width d to length a of the rectangular
plate used here is d=a ¼ 0:6.

In the first case, nondimensional wave number ka is equal to
5, the rectangular plate is meshed with 3000 triangular elements.
The six eigenvalues of largest magnitude and their corresponding
eigenvectors are computed by the fast multipole BEM, and by the
conventional direct BEM, respectively. The six eigenvalues and
the corresponding relative errors, which are calculated by
FMBEM� Directj j= Directj j, are listed in Table 2. The six eigen-

vectors contours computed by FMBEM are plotted in Fig. 3, and
their relative errors with respect to that calculated by direct BEM
in L2 sense are contained in Table 2.

The efficiency of the fast multipole BEM for the analysis of an
acoustics mode is investigated next. The nondimensional wave
number ka is set to 15. The number of elements (DOFs) used to

discretize the model is increasing from 1000 to 75,000, as shown
in Table 3. The maximum element number allowed in a leaf is set
to 20. Fifteen eigenvalues of largest magnitude and their corre-
sponding eigenvectors are requested in the computation. Eigenval-
ues and eigenvectors for the radiation operator of the rectangular
plate are computed by the direct BEM with a solver supplied in
LAPACK [38], by the direct BEM with IRAM solver, and by the fast
multipole BEM with IRAM solver, respectively. Due to the

Fig. 3 The first six radiation modes of a rectangular plate

Table 3 Memory used in the direct BEM and fast multipole BEM

DOFs 1044 2100 4130 6106 11,136 21,140 43,930 75,000
Direct
(Mb)

8.3156 33.646 130.13 284.45 946.13 3109.6* 14,723* 42,915*

FMBEM
(Mb)

3.601 5.325 9.135 11.511 22.764 32.781 77.237 190.627

Fig. 4 CPU time of the direct BEM and fast multipole BEM
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disadvantage of conventional BEM in memory, eigenvalue and
eigenvector computations with the direct BEM can just be per-
formed for DOFs up to 11,136 on our desktop PC. The CPU time
taken by the three methods denoted as direct, direct with IRAM,
and FMBEM are plotted in Fig. 4. Their memory usage is listed in
Table 3, in which * means estimated memory. The number of iter-
ations used by the fast multipole BEM with the IRAM solver for
all cases is 31.

The above examples clearly demonstrate the accuracy, effi-
ciency in CPU time, and advantage in memory usage of the fast
multipole BEM in the analysis of an acoustics radiation mode. It
gives a promising way in the analysis of an acoustic radiation
mode for large-scale baffled plates.

6 Conclusion

A fast multipole BEM in conjunction with the IRAM solver is
proposed for the analysis of an acoustic radiation mode of baffled
plates. A baffled circular plate vibrating with constant velocity,
which has an analytical radiation efficiency formula, is used first
to verify the accuracy of the fast multipole BEM. Numerical
results show that the fast multipole BEM can give very good
results. Then, the accuracy of the fast multipole BEM in comput-
ing eigenvalues and eigenvectors is investigated by comparing
with results given by the direct BEM for a baffled rectangular
plate. Finally, comparisons of CPU time and memory usage are
presented between the direct BEM and fast multipole BEM, which
reveal the potential of the fast multipole BEM in the analysis of
an acoustic radiation mode of a large-scale baffled plate.

The developed fast multipole BEM algorithm can be readily
extended to the analysis of an acoustic radiation mode for three-
dimensional large-scale problems, which are more general than
the baffled plate method. But the radiation operator derived from
the collection BEM for the three-dimensional problems is not
symmetric, which is not suitable to be used in analysis of an
acoustic radiation mode. A fast multipole BEM algorithm based
on a variational BEM in conjunction with the IRAM solver for the
analysis of an acoustic radiation mode of three-dimensional prob-
lems is under development.
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