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a b s t r a c t

A fast multipole boundary element method (FMBEM) for 3D multi-domain acoustic scattering problems

based on the Burton–Miller formulation is presented in this paper. A multi-tree structure is designed

for the multi-domain FMBEM. It results in mismatch of leaves and well separate cells definition in

different domains and complicates the implementation of the algorithm, especially for preconditioning.

A preconditioner based on boundary blocks is devised for the multi-domain FMBEM and its efficiency in

reducing the number of iterations in solving large-scale multi-domain scattering problems is demon-

strated. In addition to the analytical moment, another method, based on the anti-symmetry of the

moment kernel, is developed to reduce the moment computation further by a factor of two. Frequency

sweep analysis of a penetrable sphere shows that the multi-domain FMBEM based on the Burton–Miller

formulation can overcome the non-unique solution problem at the fictitious eigenfrequencies. Several other

numerical examples are presented to demonstrate the accuracy and efficiency of the developed multi-

domain FMBEM for acoustic problems. In spite of the high cost of memory and CPU time for the multi-tree

structure in the multi-domain FMBEM, a large BEM model studied with a PC has 0.3 million elements

corresponding to 0.6 million unknowns, which clearly shows the potential of the developed FMBEM in

solving large-scale multi-domain acoustics problems.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Fast multipole method (FMM), one of the top ten algorithms of
the last century, was first innovated by Rokhlin and Greengard
[1–3] in the mid of 1980s. In conjunction with iterative equation
solvers (GMRES [4], CG [5], etc.), FMM can reduce the matrix vector
multiplication dramatically, as well as the memory requirement to
OðNa logNb

Þ, where 1rao2 and bZ0 in solving boundary element
method (BEM) equation systems, with N being the number of
elements. These advantages overcome the well-known drawbacks
with regard to the computational efficiency and memory require-
ment of the conventional BEM and make the fast multipole BEM
(FMBEM) one of the most popular fast solution methods for the
BEM.

Initially, the FMBEM was developed and implemented for the
potential problems such as N-body dynamics and the Dirichlet
problem based on the Laplace equation [1–3]. Recently, acoustic
problems have been solved by the FMBEM widely. Sakuma and
Yasuda [6,7] developed a FMBEM for the large-scale steady-state
sound field analysis. Gumerov and Duraiswami [8] presented a
ll rights reserved.
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fast multipole method to compute the scattering from clusters of
spheres. The FMBEM for solving structural–acoustic interaction
problems was developed by Fisher, Gauland Brunner et al. [9–11].
Adaptive algorithms for the FMBEM were developed to speed up the
solutions for 3-D full- and half-space acoustic problems by Shen,
Bapat and Liu [12–14]. Analytical expressions of the moments in the
diagonal FMBEM, which can further speed up the solutions, were
derived [15], and is applied to the multi-domain FMBEM in this
paper. The FMBEM used in Refs. [6–10,12–15] can be divided into
two groups, one is named low frequency FMBEM and another is
called high frequency FMBEM. Both of them will be inefficient or fail
out of their preferred frequency range. To overcome the numerical
instabilities of the low and high frequency FMBEM, several wide-
band FMBEM have been developed recently. Darve and Havé [16]
proposed a stable-plane-wave expansion, which has a lower com-
putational cost than the multipole expansion and does not have the
accuracy and stability problems of the plane-wave expansion. Two
hybrid FMBEM were developed by Cheng et al. [17], Gumerov and
Duraiswami [18], which are stable for a wide range of frequencies.
The former switches to different representations at low and
high frequencies, while the latter is based on a rotation–coaxial
translation–back rotation scheme. More information about the
fast multipole BEM in general can be found in a review article
[19], and the first textbook [20].
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Fig. 1. A multi-domain model.
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In the field of acoustics, studies have been devoted mostly to the
single domain FMBEM even though the multi-domain or multi-
layered BEM had been used to analyze acoustic problems using the
conventional BEM. Cheng et al. [21] used the multi-domain BEM to
analyze the muffler problems. An excellent agreement with the finite
element solution was observed in the transmission loss prediction
for different muffler configurations. Sarradj [22] presented a multi-
domain BEM for the calculation of sound fields in and around porous
absorbers having a rigid frame. Seydou [23] developed a boundary
integral equation approach for solving the multi-layered acoustic
problems in a three dimensional space and validated the algorithm
by comparing the approximated results with the exact results.
Coupled structural acoustics has also been done by Chen and Liu
[24] using the BEM. To the author’s best knowledge, the FMBEM
based on the Burton–Miller formulation has not been applied to
solve 3D multi-domain acoustic problems.

In the multi-domain acoustic problems, new challenges appear
to the FMBEM due to the less favorable conditioning of the
systems of BEM equations caused by medium parameter mis-
match between adjacent domains, thin domains, etc. The use of
preconditioners [25–27] can significantly improve the conver-
gence rates in the FMBEM iterative solution. In this paper,
different from the usual FMBEM, each domain is assigned a tree
structure in the multi-domain FMBEM. Different cell definitions
among trees complicate the multi-domain FMBEM implementa-
tion and its preconditioning. A boundary block diagonal precon-
ditioner which is based on a single closed boundary division, not a
leaf in a domain tree structure, is devised to reduce the number of
iterations.

The remaining part of the paper is organized as follows. An
overview of the boundary integral formulation for the multi-domain
acoustic problems is provided in Section 2. A brief introduction of the
FMM and the FMBEM based on the Burton–Miller formulation for
the multi-domain acoustic problems are given in Section 3. More-
over, an effective moment computation based on the anti-symmetric
moment kernel, multi-tree structure and a preconditioner based on
the boundary blocks are also introduced in the Section 3. Several
numerical examples are studied up to verify the accuracy, efficiency
and applicability of the developed FMBEM for solving large-scale
multi-domain acoustic problems in Section 4. Section 5 concludes
this paper and presents some discussions concerning the multi-
domain FMBEM.
2. BIE formulation for 3D multi-domain acoustic problems

We consider the acoustic wave scattering problem in an
infinite domain ELþ1 with an obstacle EL that contains other
acoustic sub-domains. Let El, l¼ 1,2,. . .,Lþ1 be Lþ1 domains
divided by L boundaries Sl, l¼ 1,2,. . .,L, shown in Fig. 1. In the
lth domain, the sound speed and mass density are cl and rl,
respectively, the wavenumber is defined by kl ¼o=cl (also called
circular or angular wavenumber in some references), in which o
is the angular frequency of the incident wave. The normal
direction of the boundary of each domain is also indicated in
Fig. 1.

As shown in Fig. 1, every boundary or interface belongs to two
neighboring domains. Due to continuity conditions, sound pres-
sure j are equal on each boundary Sl. So that, it is easy to get the
pressure boundary condition, for boundary Sl

jliðyÞ ¼jloðyÞ ¼jlðyÞ for yASl, ð1Þ

in which li and lo are numbers of the two domains which share
the same boundary Sl, and the two domains are named inner
domain and outer domain of the boundary Sl. Another boundary
condition is derived from the continuous velocity condition and
Euler’s equation. It states

@jliðyÞ

@nlðyÞ
¼

rli

rlo

@jloðyÞ

@nlðyÞ
: ð2Þ

Define

ql
lðyÞ ¼

@jlðyÞ

@nlðyÞ
, ð3Þ

where ql
lðyÞ means the normal gradient of sound pressure by

letting y approach to the boundary Sl from the domain El side.
The velocity boundary condition can be rewritten as

qli
l ¼ rlql for l¼ 1,. . .,L, ð4Þ

in which rl ¼ rli=rlo and ql ¼ qlo
l .

Suppose Gl is the boundary set of the domain El and bound-
aries in domain Gl are smooth, as shown in Fig. 1, boundary set G1

contains only boundary S1, boundary set G2 contains boundaries
S1 and S2, boundary set GL composes of boundaries Sl with l being
2,. . .,L, and boundary set GLþ1 contains boundary SL. Therefore,
the conventional boundary integral equation (CBIE) in each
domain is

1

2
jlðxÞ ¼

X
St \Gl

Z
St

Glðx,yÞql
tðyÞ�e

l
t
@Glðx,yÞ

@ntðyÞ
jtðyÞ

� �
dSðyÞ

þjIðxÞ for xASl\Gl, ð5Þ

in which l¼ 1,. . .,Lþ1, el
t is the normal direction coefficient of

boundary St for domain El, el
t ¼�1 if l¼ t and el

t ¼ 1 if l4t, jIðxÞ
is the incident wave and presents just in the outermost domain
for scattering problems. In this paper, the time convention
adopted is e�iot , correspondingly, the free-space Green’s function
for 3-D problems in the lth domain is

Glðx,yÞ ¼
eiklr

4pr
with r¼ 9x�y9 ð6Þ

Non-uniqueness of the CBIE solution in exterior acoustic pro-
blems solution appears when the frequency of the incident wave
coincides with the corresponding interior problems’ eigenfrequency.
To deal with the non-uniqueness difficulties, Burton and Miller [28]
proposed a method by combining the CBIE and the normal deriva-
tive of the CBIE. Taking the derivative of the integral representation
with respect to the normal at the field point x leads to the following
hyper-singular boundary integral equation (HBIE):

1

2
ql
lðxÞ ¼

X
St\Gl

Z
St

@Glðx,yÞ

@nlðxÞ
ql
tðyÞ�e

l
t

@2Glðx,yÞ

@nlðxÞ@ntðyÞ
jtðyÞ

" #
dSðyÞ

þ
@jIðxÞ

@nlðxÞ
for xASl\Gl, ð7Þ
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in which l¼ 1,. . .,Lþ1. Define operators as

Sll,tql
tðyÞ ¼

Z
St

Glðx,yÞql
tðyÞdSðyÞ for xASl\Gl, ð8Þ

Dl
l,tjtðyÞ ¼ e

l
t

Z
St

@Glðx,yÞ

@ntðyÞ
jtðyÞdSðyÞ for xASl\Gl, ð9Þ

Ml
l,tql

tðyÞ ¼
Z

St

@Glðx,yÞ

@ntðxÞ
ql
tðyÞdSðyÞ for xASl\Gl, ð10Þ

Hl
l,tjtðyÞ ¼ e

l
t

Z
St

@2Glðx,yÞ

@nlðxÞ@ntðyÞ
jtðyÞdSðyÞ for xASl\Gl: ð11Þ

A linear combination of Eqs. (5) and (7) yields the following
well-known Burton–Miller formulation (CHBIE or dual BIE) which
has unique solutions at all frequencies:P
St \Gl

f½Dl
l,tþblHl

l,t�jtðyÞ�½Sll,tþblMl
l,t�q

l
tðyÞg

þ
1

2
½jlðxÞþblq

l
lðxÞ� ¼j

IðxÞþbl

@jIðxÞ

@nlðxÞ
for xASl\Gl, ð12Þ

in which l¼ 1,. . .,Lþ1, bl is a coupling constant that must be a
complex number and can be chosen, for example, as i/kl. Taking the
boundary conditions into account, for the multi-domain acoustic
problems, there are actually 2L sets of unknown quantities defined
on the L boundaries which will lead to 2L set of BIE equations.
Those BIE equations can be ordered according to domains or to
boundaries. Due to the mismatch of mediums in different domains,
the discretized BIE equations can have very poor condition num-
bers which are not favorable in solutions with iterative solvers.
Therefore, the BIE equations should be ordered into a form which
permits easy preconditioning and hence can reduce the number of
iterations. As suggested in Ref. [29], the discretized form of the
multi-domain BEM equations can be ordered according to bound-
aries as follows:

A1
1,1 r1B1

1,1 0 0 . . . 0 0

A1
2,1 B1

2,1 A1
2,2 r2B1

2,2 . . . 0 0

A2
2,1 A2

2,1 A2
2,2 r2B2

2,2 . . . 0 0

0 0 A2
L,2 B2

L,2 . . . A2
L,L rLB2

L,L

^ ^ ^ ^ & ^ ^

0 0 0 0 . . . AL
L,L rLBL

L,L

0 0 0 0 . . . AL
Lþ1,L BL

Lþ1,L

2
666666666666664

3
777777777777775

u1

q1

u2

q2

^

uL

qL

2
666666666664

3
777777777775
¼

0

0

0

0

^

0

bL

2
666666666664

3
777777777775

,

ð13Þ

in which Al
l,t and Bl

l,t are sub-matrices defined as

Al
l,t ¼

1

2
dl,tIþDl

l,tþblHl
l,t, ð14Þ

Bl
l,t ¼

bl

2
dl,tI�ðSll,tþblMl

l,tÞ: ð15Þ

Sub-vector bL is generated by the incident wave and I is the
unit matrix. On the interfaces, pressure continuity and velocity
equilibrium conditions have been assumed.

Solving Eq. (13) with direct linear equation numerical solvers
such as LU decomposition and Gaussian elimination methods
results in a memory cost in proportion to O(N2) and CPU time in
proportion to O(N3). These disadvantages prevent the BEM based
on the conventional algorithm from solving large-scale multi-
domain acoustic problems. The FMBEM has been proved a very
efficient fast solution method in solving large-scales acoustic
problems. The approach to reduce the complexity of the matrix-
vector computation using the FMM is discussed next.
3. Fast multipole boundary element method

3.1. Multipole expansion

To use the FMM to efficiently evaluate the matrix-vector
multiplication with iterative solver, the source elements (here
refer to the element of integration) of a field element (refers to
element with the collocation point) are divided into two groups,
named near group and far group, based on the tree structure.
Contributions from the near group are calculated by direct
method such as Gaussian quadrature, while contributions from
the far group are evaluated by the FMM. Taking operator Sll,t as an
example, we will describe the computation of contributions from
elements in a far group to a field element by the FMM in this
section. Refer to Ref. [30] to get more details of the FMM algorithm.
To simplify notations, the subscripts and superscript are omitted in
Sll,t. Suppose x is the center of a field element and Fx is a set of all
elements far from the element x in the sense of the tree structure. In
light of Eq. (8) and using the fast multipole expansion of the kernel
based on a plane wave expansion [31], contributions from all far
enough elements to the field element are described by

SqðyÞ ¼
ik

16p2

Z
s1

Iðr̂,x,xcÞTðr̂,xc ,ycÞ

Z
DSj A Fx

Oðr̂,yc ,yÞqðyÞdSðyÞ

 !
ds,

ð16Þ

for 9x�xc9o9y�xc9 and 9y�yc9o9x�yc9, where xc is an expansion
point near x and yc is that near y. The translation, inner and outer
functions in Eq. (16) are defined by

Tðr̂,xc ,ycÞ ¼
X1
n ¼ 0

inð2nþ1Þhð1Þn ðkuÞPnðûUr̂Þ, ð17Þ

Iðr̂,x,xcÞ ¼ eikðx�xc ÞUr̂, ð18Þ

Oðr̂,yc ,yÞ ¼ eikðyc�yÞUr̂, ð19Þ

respectively, where u¼ 9xc�yc9 and û¼ ðxc�ycÞ=u, Pn is the nth
order Legendre function, r̂¼ r̂ðy,fÞ ¼ ðsinycosf, sinysinf, cosyÞ
in which y and f are polar coordinates of point r on the unit
sphere s1.

The moment for a cell centered at yc, containing a set of
elements O, are defined by

Mðr̂,ycÞ ¼
X

DSj AO

Z
DSj

eikðyc�yÞUr̂qðyÞdSðyÞ: ð20Þ

The moment of all cells is computed in the upward pass which
traces the tree from the bottom to the top. Methods to compute
the moment effectively are described in the Section 3.2. After
obtaining the moments of cells, the local expansion for one cell
centered at xc is evaluated by collecting the moments of its well-
separated cells and transferring the local expansions from its
parent cell. Those well-separated cells of one cell are noted as the
interaction list L, the moment of all cells in a cell’s interaction list
is converted to the local expansion of the cell through

Lðr̂,xcÞ ¼
X

yc AL

Tðr̂,xc ,ycÞMðr̂,ycÞ, ð21Þ

for 9x�xc9o9y�xc9 and 9y�yc9o9x�yc9, in which x is a field point
located in the local cell whose center is xc, y is the source point
located in one of the cells in the interaction list whose center is yc.

Generally, the number of sample points on a unit sphere s1 at
a level depends on the cell size of the level. Due to the mismatch
of sample points on the unit sphere, the moments and local
expansions of cells at different levels cannot be passed to their
child cells or parent cells directly. Interpolations become crucial
to M2M and L2L translations because the overall accuracy and
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computation complexity largely depend on these interpolations,
especially for models with large tree structures. Jakob-Chien and
Alpert [32] introduced an interpolation method with uniform resolu-
tion which is based on the FMM and fast Fourier transform (FFT).
Sarvas [33] proposed an FFT method to perform the interpolations.
Using the interpolation method, M2M and L2L are composed of two
steps. First, in the upward pass the moments are temporarily shifted
from the child level to the parent level. Conversely, in the downward
pass the local expansions are temporarily shifted from the parent
level to the child level. They are computed, respectively, by

~Mðr̂,yc0 Þ ¼ eikðyc0 �yc ÞUr̂Mðr̂,ycÞ for 9y�yc0 9o9x�yc0 9, ð22Þ

~Lðr̂,xc0 Þ ¼ eikðxc�xc0 ÞUr̂Lðr̂,xcÞ for 9x�xc0 9o9y�xc0 9: ð23Þ

Second, interpolations are performed over a unit spherical
surface for the temporary moments and local expansions in the
upward and downward passes, respectively, to reconstruct the
final moments Mðr̂,yc0 Þ and local expansions Lðr̂,xc0 Þ.

In the downward pass, when a leaf containing the point x is
reached, the final evaluation of contributions from all far enough
elements to the point x are computed by

SqðyÞ ¼
ik

16p2

Z
s1

Iðr̂,x,xcÞLðr̂,xcÞds: ð24Þ

To reconstruct the contributions from all elements on the
domain boundaries, direct numerical method is still needed to
compute the contributions from elements contained in the adjacent
cell.

The rest three operators defined in Eqs. (9)–(11)share the same
M2M, M2L and L2L with the operator S, except that moments of
operators D and H should be computed by

Mðr̂,xcÞ ¼
X

DSj AO

Z
DSj

�ik
@y

@nðyÞ
Ur̂

� �
eikðyc�yÞUr̂jðyÞdSðyÞ, ð25Þ

and final evaluations of operators M and H are

KgðyÞ ¼
ik

16p2

Z
s1

ik
@x

@nðxÞ
Ur̂

� �
Iðr̂,x,xcÞLðr̂,xcÞds, ð26Þ

in which the symbol K represents either the operatorM orH, and
correspondingly g represents q and j.

Different from the usual single-domain FMBEM for acoustic
problems in which either the sound pressure or velocity is given
on each element, the multi-domain FMBEM considered in this
paper needs to solve the two sets boundary quantities j and q

with coupled BIEs. In the multi-domain FMBEM, the FMM is
actually used to compute

f ðxÞ ¼ Al
l,tjtðyÞþBl

l,tql
tðyÞ, ð27Þ

for far enough points x and y in the sense of tree structure. Similar
to the multipole expansions of the four operators introduced
above, the moments of the multi-domain FMBEM in the lth
domain are defined as

Mðr̂,ycÞ ¼
X

DSj AO

Z
DSj

�ql
tðyÞ�ikl

@y

@nðyÞ
Ur̂

� �
jtðyÞ

� �
eiklðyc�yÞUr̂ dSðyÞ,

ð28Þ

and the final evaluation is computed by

f ðxÞ ¼
ik

16p2

Z
s1

iklbl

@x

@n xð Þ
Ur̂

� �
þ1

� �
Iðr̂,x,xcÞLðr̂,xcÞds, ð29Þ

in which the local expansions Lðr̂,xcÞ are obtained from Eq. (21)
based on the moments in Eq. (28).

In the diagonal form FMBEM, integration over the unit sphere
in Eq. (29) is computed by p points Gaussian quadrature method
in the y direction and 2p points square quadrature in the f
direction [31]. To determine the number (p), the following
empirical formulation is applied [34]:

p¼ kdþc0 logðkdþpÞ ð30Þ

where d is the diameter of the cell on which integration are
calculated, and c0 is a number to determine the desired accuracy.

3.2. Effective moment computations

Suppose the number of sample points on the unit sphere in the
y direction is M, in the f direction is P, and the number of
elements contained in a cell is N. In light of Eq. (20), moments of a
cell should be evaluated for all sample points on the unit sphere
and all elements contained in the cell. That means for the cell,
M� P�N numerical evaluations of Eq. (20) need to be performed.
For a large-scale model with large non-dimensional value ka, cost
in computations of moments is very high. To reduce the cost of
the computation, an analytical moment integration for the diag-
onal form acoustic FMBEM was proposed and had been demon-
strated very efficient in solving acoustic problems [15].

In addition to the analytical moment, another method which
can reduce the moments integrations by half is developed.This is
based on the anti-symmetry of the moment kernel

eikðyc�yÞUr̂ðy,fÞ ¼ e�ikðyc�yÞUr̂ðp�y,pþfÞ: ð31Þ

For a constant element, its source strength qðyÞ is a constant
complex number. In order to use the anti-symmetry of the kernel
to reduce the computation, the moment computation is divided
into two steps. Moments for the upper hemisphere of the unit
sphere for an element j are computed firstly,

Mjðr̂ðy,fÞ,ycÞ ¼

Z
DSj

eikðyc�yÞUr̂ dSðyÞ for 0ryr
p
2

, 0rfr2p:

ð32Þ

Using the fact in Eq. (31), moments for the lower hemisphere
are calculated by

Mjðr̂ðy,fÞ,ycÞ ¼Mjðr̂ðp�y,pþfÞ,ycÞ
n for

p
2
oyrp, 0rfr2p,

ð33Þ

in which n means complex conjugate. The final moments are
given by

Mðr̂ðy,fÞ,ycÞ ¼
X

DSj AO

Mjðr̂ðy,fÞ,ycÞqðyÞ for 0oyrp, 0rfr2p:

ð34Þ

The above formulations are derived for operators S and M.
Operators D and H also share this characteristics. We name the
characteristics as the anti-symmetry of moments in the diagonal
FMBEM. For the linear element with the diagonal FMBEM, the
computation of the moments can also be reduced by a factor of
two using a similar method.

3.3. Multi-tree structure

The depth of a tree structure in the FMM has a significant
influence on the efficiency of the multi-domain FMBEM. If the tree
structure is too deep, the number of translations between levels
will increase, and the numerical instability [35] for the diagonal
FMMBEM, as used in this paper, may occur. In contrast, a small
number of tree levels may increase adjacent interactions, thus
pushing the portion of the direct numerical computation up which
will affect the overall computational time. In multi-domain acoustic
problems, due to different properties of the medium in the domains,
the corresponding wavenumber varies from domains to domains.
To tackle all these new challenges for the multi-domain FMBEM,
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a multiple tree structure is adopted. This multiple tree structure
assigns each domain a single tree that differs from the single tree
structure for another domain and therefore complicates the imple-
mentation due to the different definitions of leaves on the interfaces.

In the iterative solution process, the matrix-vector multiplication
of the multi-domain acoustic problems is computed domain by
domain when using the multiple tree structure, and then the final
productions of each domain are rearranged according to boundaries,
as shown in Eq. (13). The multi-tree structure leads to each domain
having two sets of coefficients, the moments and local expansions.
Moments are calculated from the bottom to the top and stored for
all cells in the upward pass. In the downward pass, local expansions
are just translated between two adjacent levels, memory is not
necessary to be allocated for all cells. A common memory block
which can cover the largest local expansion for two adjacent levels
is shared by cells for storing their local expansions in the downward
pass. Since computation is performed domain by domain, therefore
the memory for moments and common memory blocks for local
expansions can be allocated according to the largest one among
domains. If preconditioning is used, the sparse preconditioning
matrices for each domain are usually saved for reusing to speed
up the preconditioning inverse computation. However, this can
result in large memory cost for the multi-domain FMBEM.
S11

S12

S21 S22E1

E2

E3

Fig. 3. A special case of boundary division.
3.4. Preconditioner

Preconditioners for the FMBEM are crucial for its convergence
and computing efficiency. Since the mismatch of cell definitions
in adjacent domains, the usual block diagonal preconditioners
based on the tree structure are not permissible. A preconditioner,
named pre-conditioner B in Ref. [29] based on Eq. (11) therein, had
been proved very effective for elastostatic inclusion problems. But
as mentioned in [29], larger diagonal matrices need to be inverted
which can be time-consuming if the number of elements on each
inclusion is large. A compromising preconditioner based on the
boundary block is proposed here, which can reduce the number of
iteration for the GMRES solver as well as the time of the block
diagonal matrix inverse. It can also reduce the memory size for
storing the block diagonal coefficient matrices if it needs to reuse
the coefficient matrices in the iteration.

The preconditioner is based on Eq. (13) while blocks are not
based on the whole boundary of small domains. Blocks on a
boundary are disjoint parts of the boundary which are divided by
a certain method. One direct method to realize the boundary
division is to use the tree structure generation algorithm while
only leaves are referred, as shown in Fig. 2.

After grouping elements on each closed boundaryinto blocks, the
discretized multi-domain BEM equations should be rearranged
according to the blocks on boundaries. Suppose a special case with
two boundaries (S1 and S2) and three domains (E1, E2 and E3) and
each boundary are divided into two blocks (S1 ¼ S11[S12, and
S2 ¼ S21[S22), as shown in Fig. 3, the rearranged BEM equations
can bedescribe as

M¼

A11
1,11 r1B11

1,11 A11
1,12 r1B11

1,12 0 0 0 0

A11
2,11 B11

2,11 A11
2,12 B11

2,12 A11
2,21 r2B11

2,21 A11
2,22 r2B11

2,22

A12
1,11 r1B12

1,11 A12
1,12 r1B12

1,12 0 0 0 0

A12
2,11 B12

2,11 A12
2,12 B12

2,12 A12
2,21 r2B12

2,21 A12
2,22 r2B12

2,22

A21
2,11 B21

2,11 A21
2,12 B21

2,12 A21
2,21 r2B21

2,21 A21
2,22 r2B22

2,22

0 0 0 0 A21
3,21 B21

3,21 A21
3,22 B21

3,22

A22
2,11 B22

2,11 A22
2,12 B22

2,12 A22
2,21 r2B22

2,21 A22
2,22 r2B22

2,22

0 0 0 0 A22
3,21 B22

3,21 A22
3,22 B22

3,22

2
6666666666666666664

3
7777777777777777775
�

u11

q11

u12

q12

u21

q21

u22

q22

2
666666666666664

3
777777777777775

¼

0

0

0

0

0

b21

0

b22

2
666666666666664

3
777777777777775

, ð35Þ

in which the double subscripts and superscripts ‘‘ln’’ means the nth
block on the lth boundary. In this case, the following block diagonal
matrix from the coefficient matrix in Eq. (35) is used as the pre-
conditioner:

M¼

A11
1,11 r1B11

1,11 0 0 0 0 0 0

A11
2,11 B11

2,11 0 0 0 0 0 0

0 0 A12
1,12 r1B12

1,12 0 0 0 0

0 0 A12
2,12 B12

2,12 0 0 0 0

0 0 0 0 A21
2,21 r2B21

2,21 0 0

0 0 0 0 A21
3,21 B21

3,21 0 0

0 0 0 0 0 0 A22
2,22 r2B22

2,22

0 0 0 0 0 0 A22
3,22 B22

3,22

2
6666666666666666664

3
7777777777777777775

:

ð36Þ

The system of BEM equations in Eq. (35) is right precondi-
tioned with the above block diagonal preconditioner as described
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in Eq. (36). The diagonal sub-matrices in the preconditioner are
obtained once and saved in memory for reusing in the subsequent
iterations to save the CPU time.
y

4. Numerical examples

Numerical examples are presented in this section to demon-
strate the accuracy and robustness of the FMBEM for multi-
domain acoustic problems. The GMRES solver is used and the
tolerance is set at 10�4. All the simulations are done on a desktop
PC with a 64-bit Intels Core TM2 Duo CPU and 8 GB RAM, but
only one core is used in the computation.

4.1. A sphere model

First, a penetrable sphere in an infinite domain and impinged by
a plane wave with unit amplitude is investigated to verify the CHBIE
formulations for the multi-domain acoustic problems. Radius of the
sphere is a¼ 1m, as shown in Fig. 4. Sound speed and medium mass
density in domain E1 are c1 ¼ 200m=s and r1 ¼ 2:01kg=m3, in
domain E2 are c2 ¼ 300m=s and r2 ¼ 3:01kg=m3. The plane wave is
traveling along þz-axis. In this case, analytical solution is available.
Pressure in the exterior domain is

j2ðxÞ ¼
X1
n ¼ 0

in
ð2nþ1ÞPnðcosyÞ½jnðk29x9Þþanhnðk29x9Þ�, 9x9Za, ð37Þ

in which y is the polar angle of point x in the spherical coordinates,
and the series expansion coefficients an are defined by

an ¼
gj0nðk1aÞjnðk2aÞ�jnðk1aÞj0nðk2aÞ

jnðk1aÞh0nðk2aÞ�gj0nðk1aÞhnðk2aÞ
, ð38Þ
s1

a

x

y

zE1

E2
n

Fig. 4. A sphere model.
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where jn and hn are first kind spherical Bessel and Henkel function of
order n, respectively, and g¼ k1=r1k2. The non-dimensional value
k2a ranges from 2.0 to 10.0 by 500 steps, k2 is the wavenumber in
the E2 domain. Corresponding elements in the model mesh increase
from 3888 to 25,392. Boundary solutions are computed by the
FMBEM with the CBIE and CHBIE, respectively. The sound pressures
at the field point, (0, 2a, 0), are plotted in Fig. 5(a), which indicates
that the BEM equations with the CBIE fail to give the correct result at
the fictitious eigenfrequencies which correspond to k2a¼ np, n¼

1,2,. . .. The relative errors of solutions given by the CBIE and CHBIE
formulations with respect to the analytical solutions are plotted in
Fig. 5(b). It shows that, away from the fictitious frequencies, solutions
given by the CHBIE formulation are slightly worse than solutions
given by the CBIE.
4.2. Two concentric spheres model

We next study the efficiency as well as the accuracy of the
multi-domain FMBEM and the developed algorithm. The model
used in this study is two concentric spheres immersed in an
infinite domain E3, as shown in Fig. 6, a cross section on the oyz

plane. Radius of the inner sphere is a¼ 1m, the thickness of
domain E2 in the radius direction is d¼ ga, where g is set to be
0.25 in this study. The model is impinged upon by a plane wave
traveling along þz-axis. In this case, sound speed and medium
mass density in domain E1 are c1 ¼ 1500 m=s and r1 ¼ 1000
kg=m3, in domain E2 are c2 ¼ 1324m=s and r2 ¼ 800 kg=m3, in
domain E3 are c3 ¼ 1121m=s and r3 ¼ 791kg=m3.

First, we set the frequency of the incident wave as a constant,
f 3 ¼ 800Hz. Analytical solution is also available for this case.
2 4 6 8 10
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Fig. 6. Two concentric spheres.



103 104 105
101

102

103

104

105

Number of elements

M
em

or
y 

(M
b)

FMBEM
BEM

Fig. 9. Memory used by the FMBEM and conventional BEM.

H.J. Wu et al. / Engineering Analysis with Boundary Elements 36 (2012) 779–788 785
Theoretically, refining the discretization will make the solution
converge to the analytical result. This fact is used to validate the
accuracy of the multi-domain FMBEM. The total number of elements
increases from 1068 to 29,496. Note that the dimension of corre-
sponding BEM equations is twice as many as the total element
number. The absolute relative error is defined in L2 norm, as

Error¼
:ðjnum�janaÞþðqnum�qanaÞ:

:janaþqana:
, ð39Þ

in which jnum and qnum are the corresponding numerical results
solved with the FMBEM or the conventional BEM based on the
Burton–Miller formulation, jana and qana are analytical solutions.
The error curve is plotted in Fig. 7. It shows that solutions obtained
by the FMBEM and BEM agree very well with each other. The error
goes down with increasing the number of elements and converges,
which demonstrates the accuracy of the multi-domain FMBEM. In
the simulations, the iterative number increases from 36 to 46 and
reaches the constant number 46 for the last three steps in this case.
The CPU times and the memory usages are plotted in Figs. 8 and 9
which do demonstrate advantages of the multi-domain FMBEM in
CPU time cost and memory allocation. In Fig. 9, memory require-
ments for the FMBEM include the memory assigned for the direct
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Table 1
Element numbers, iteration numbers and errors for the two concentric spheres

scattering at different frequencies.

Frequency (Hz) Element no. Preconditioning Error

Inner Outer Case 1 Case 2 Case 3

200 1728 2700 30 18 17 2.150E�03

400 4800 6438 44 30 27 1.788E�03

600 9408 11,532 60 43 36 1.326E�03

800 15,552 19,200 85 57 47 1.192E�03

1000 24,300 30,000 103 87 74 9.060E�03

1200 36,300 43,200 152 99 85 7.265E�03

1400 44,652 55,488 155 99 81 6.500E�03

1600 58,800 86,700 255 137 109 1.900E�03

1800 76,800 120,000 279 194 152 1.503E�03
coefficients storage, and the dash line means estimated memory
used in the conventional BEM.

To validate the accuracy and demonstrate the efficiency of the
multi-domain FMBEM for a wide range of frequencies, another
simulation is performed for the two concentric spheres model. The
incident wave frequency increases from 200 Hz to 1800 Hz with
9 steps. The numbers of total element varying with the increasing
frequency are given in Table 1, and the corresponding errors,
defined in Eq. (39), of the FMBEM solutions are also listed therein,
which further demonstrates the accuracy of the developed multi-
domain FMBEM. The perconditioner’s performance is explored in
this study. First, no preconditioned GMRES solver is used to
compute the results at the 9 steps. Then the right preconditioned
GMRES with different configurations, in which the maximum
elements (Bmaxl) allowed in the boundary block division using the
tree generation algorithm are set to 20 and 60, respectively, are
employed to solve the results at the 9 steps. Iteration numbers used
in those different solver configurations are included in Table 1, in
which case 1, 2 and 3 correspond to no preconditioning, Bmaxl is 20,
and 60. Obviously, significant achievement is made in convergence
rates in the iterative solution by using the preconditioner in Eq. (36),
which is based on the BEM equations in Eq. (35). For some steps, no
big differences in the iteration number between cases 1 and 2. That
is because block structures generated by the two Bmaxls are slightly
different due to the model’s geometry. However, without precondi-
tioner the iteration number grows up quickly with respective to the
increasing frequency. That high growth rate with respect to fre-
quency does not show up in the single domain FMBEM. So that,
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preconditioner is even more crucial to the multi-domain FMBEM.
Fig. 10 is a plot of CPU times used for the calculations with and
without preconditioner. Memory requirements for preconditioner
with different Bmaxls are plotted in Fig. 11. The bigger the Bmaxl is
the larger the memory needed as indicated in Fig. 11. If the double
precision format is used, the size of memory for the preconditioner
is bounded by 6.1035E�5�Bmaxl�NMb, which assumes that all
the blocks have Bmaxl elements. As indicated in Fig. 11, the memory
size for the preconditioner is O(Bmaxl N log N).
Fig. 12. A cubic box nested with multiple spheres.
4.3. Scattering from a cubic box nested with multiple spheres

Amore complex multi-domain scattering model is investigated
next. The model is a cubic box in a 5 m�5 m�5 m domain
containing 27 uniformly distributed spheres whose radius is
0.5 m, and immersed in an infinite domain, as shown in Fig. 12.
Spherical domains have the same sound speed, 1190 m/s, and the
same mass density, 791 kg/m3. The cubic box domain and the out
most domain share the same sound speed and mass density of the
domains E2 and E3 in the previous case, respectively. The incident
plane wave with unit magnitude is traveling along þz-axis with
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Fig. 13. Boundary solutions: (a) and (c) are j
�� �� solutions of the cubic box’s and

multiple spheres boundaries, (b) and (d) are q
�� �� solutions of the cubic box’s and

multiple spheres boundaries.
the frequency of 1000 Hz. The maximum element number
allowed in the boundary block is set to 80. The maximum element
number allowed in a leaf in domain trees is set to 40. The
tolerance for convergence of the solution is set to 10�3 in this
case. Each sphere is meshed with 7500 triangular elements, and
the cubic box is meshed with 120,000 triangular elements. Right
preconditioned GMRES is used in the computation. The total
number of elements used in this model is 322,500 (and the
dimension of the BEM equations is 2�322,500). The number of
iteration used and CPU time spent in this case are 137 times and
10,230 s, respectively, which further demonstrate the potential of
the developed multi-domain FMBEM in solutions of large-scale
multi-domain acoustic problems. It is worth noting that the CPU
time used in this case is 12,332 s if the anti-symmetry of moment
is not applied. The boundary solutions and computed field
pressure on a surface are plotted in Figs. 13 and 14.
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5. Conclusion

In this paper, a fast multipole boundary element method
(FMBEM) for 3D multi-domain acoustic problems is developed,
which can have a broad range of applications, such as in the
characterization of sound absorbing materials, underwater acous-
tics and biomedical applications. The multi-domain FMBEM is
based on the Burton–Miller BIE formulation. It can give unique
solutions at the fictitious eigenfrequencies, which is demon-
strated by the frequency sweep analysis for a single sphere
scattering model. Since the wavenumber usually varies among
domains, multi-tree structure is employed in the multi-domain
FMBEM. To overcome the mismatch of the cell definition in
domains, the BEM equations are reformulated according to
boundaries, which allows the adoption of the boundary block
diagonal preconditioner. The boundary block diagonal precondi-
tioner assembles the coefficients of submatrices in blocks as block
diagonal matrices to approximate the BEM coefficient matrix. The
larger the block sizes are, the closer the assembled matrix
approximates to the BEM coefficient matrix and the larger
memory the preconditioner takes. If domains have the same
geometry and same material properties, as the case in Section
4.3, those domains can share the same preconditioners. This
special case can save the memory for storing the preconditioners.
However, this technique is not applied in the current work with
the intent to leave the developed multi-domain FMBEM code as
general as possible so that it can be applied to solve a broader
range of multi-domain acoustic problems.

Although the boundary block preconditioner devised for the
multi-domain FMBEM turns out to be very efficient in reducing
the iteration number, as indicated by the two concentric sphere
scattering example, preconditioning for the multi-domain acous-
tic FMBEM still remains as an subject of study. Sometime the
block size needs to be set as a larger number to get a good
convergence rate in the iterative solution. In addition to the high
preconditioning cost, the multi-tree structure also leads to larger
memory requirement and high CPU time cost. These challenges
make the multi-domain FMBEM not possible now to solve the
large-scale acoustic problems as large as the single-domain
FMBEM has dealt with. Additional improvements are needed.
The multi-domain FMBEM developed in this paper can also be
applied to solve multi-layered acoustic problems. For multi-
layered problems, the BEM equations are similar to Eq. (13)
except that each layer just has two boundaries which may lead
to a sparse coefficient matrix.
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