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A newly developed computational approach is proposed in the paper for the analysis of multiple crack

problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen

COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack

surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the

conventional displacement discontinuity boundary integral equations in an iterative fashion with

a small size of system matrix to determine all the unknown CODs step by step. To deal with the

interactions among cracks for multiple crack problems, all cracks in the problem are divided into two

groups, namely the adjacent group and the far-field group, according to the distance to the current

crack in consideration. The adjacent group contains cracks with relatively small distances but strong

effects to the current crack, while the others, the cracks of far-field group are composed of those with

relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts.

The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby

matrix derived from the traction boundary integral equations in discretized form, while the second part

is computed by using those of far-field cracks so that the high computational efficiency can be achieved

in the proposed approach. The numerical results of the proposed approach are compared not only with

those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green’s functions

(NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of

the proposed approach is verified. Numerical examples are provided for the stress intensity factors of

cracks, up to several thousands in number, in both the finite and infinite plates.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Quite a lot of brittle or quasi-brittle materials [1–4] can be
modeled as solids with multiple cracks where the presence of
cracks is a common reason for failures of these materials, such as
concretes, rocks, ceramics, brittle metallic materials, as well as the
fibre-reinforced brittle materials after certain extent of tensile
damage. The prediction of crack behavior represents a real concern
among engineers designing general structures and has always been
a challenge for researchers. There are also many researches
reported in literature, showing the significance of this kind of
research. It is true that the exact locations of the cracks are difficult
to know, just like those of multiple particles in solids. This would be
one of the reasons of scatters of properties such as fracture
ll rights reserved.
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strengths observed from the brittle materials owing partially to
the distributions of cracks in sizes, locations, orientations and
interactions among cracks, which are challenge tasks and need to
be investigated. Since Irwin postulated that crack behavior is
determined only by the value of the stress intensity factor (SIF)
which depends on the stress field accuracy in the vicinity of the
crack tip, the SIF are the main parameters to seek in linear elastic
fracture mechanisms (LEFM). Due to their complexity, most crack
problems cannot be solved by analytical procedures [5]. The
appropriate numerical modeling of LEFM problems became also a
challenge for engineers. There are generically two numerical
modeling difficulties specifically to the boundary element method
(BEM) [6], i.e., the accurate determination of the stress field near
the crack tip and the degeneration of the integral equation because
of the geometric coincidence of crack surfaces. A good refinement of
the mesh associated to the usage of special tip elements are usually
enough to overcome the first difficulty [7] while the degeneration
in the BEM is usually avoided by applying the sub-region technique

www.elsevier.com/locate/enganabound
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2012.12.007
http://dx.doi.org/10.1016/j.enganabound.2012.12.007
http://dx.doi.org/10.1016/j.enganabound.2012.12.007
mailto:hangma@staff.shu.edu.cn
http://dx.doi.org/10.1016/j.enganabound.2012.12.007


H. Ma et al. / Engineering Analysis with Boundary Elements 37 (2013) 487–500488
[8,9]. One of the established alternatives to the degeneration
problem is the simultaneous utilization of the traditional displace-
ment and the traction integral equations, known as mixed or dual
formulation of boundary integral equations (BIE) [10,11]. However,
for the multiple crack problems, the size of the system matrix of the
dual BIE will grow very large with the increase of the number of
cracks since the unknowns appear on both the crack surfaces and
outer boundaries of the problem. It seems that the mathematical
techniques of the fast multipole expansions [12,13] should be
employed to deal with such a large scale problem so that the
solution complexity increases.

One of the most accurate solutions obtained for this class of
problems, though restricted in its analytical form, involves the
usage of analytical Green’s functions, i.e., the Erdogan function,
for a cracked medium, as the fundamental solution in the BEM
[14] to eliminate the unknowns at crack surfaces. The integration
along the crack surface is necessary only when prescribed trac-
tions exist. Since the analytical Green’s functions are often in
complex form, limited to the two-dimensional problems and to a
single crack of simple shape, not available for the majority
of applications especially for three-dimensional problems, the
numerical Green’s function (NGF) procedure suggested by Telles
[15,16] has gained attention as an efficient option to solve LEFM
engineering problems to avoid the crack tip discretization.

In the Telles method, the numerical Green’s function can be
written in terms of a superposition of a full space fundamental
solution plus a complementary part which provides satisfaction of
the traction free requirement over the crack surfaces. The hyper-
singular boundary integral equation is used to obtain the crack
surface fundamental displacement discontinuities numerically for
the complementary problem, i.e., the problem where the crack,
embedded in the infinite medium, is loaded with the negative of
the Kelvin tractions [15,16]. Therefore, once the fundamental
displacement discontinuities for the cracks are known, the com-
plementary numerical solution of the NGF for displacements and
tractions, at any point inside the multi-cracked infinite domain, is
obtained directly by using the classical and traction boundary
integral equations. In this way, the final fundamental Green’s
function kernel combines the two effects: the Kelvin analytical
kernels and the complementary numerical ones [15,16]. The
procedure automatically includes the cracks into the fundamental
numerical Green’s function and, therefore, the classical BEM can be
used, without having to define boundary elements over the cracks,
to determine the external boundary unknowns of the proposed
problem. In consequence, the system matrix of the problem
remains of small scale and the SIF needed can be computed.

For the multiple crack problems, however, the size of the
matrix to determine the complementary solutions of the NGF will
also grow very large with the increase of the number of cracks
since the complementary solutions have to be determined
numerically during the problem solution using the BEM. Kacha-
nov [17,18] proposed a method very popular in practice to deal
with the interaction problems based on the superposition tech-
nique and the assumption that only average tractions on indivi-
dual cracks contribute to the interaction effect [19]. To eliminate
these shortcomings, the concept of the eigen crack opening
displacements (COD) are firstly introduced in [20] and reaffirmed
in the present paper, which can be defined as the crack opening
displacement of a crack in infinite domain under the fictitious
traction acting on crack surface. With the concept of eigen COD,
the multiple crack problem can be solved by using the conven-
tional displacement discontinuity boundary integral equations
with a small size of system matrix but in an iterative fashion
because of the interactions among multiple cracks.

To deal with the interaction effects more efficiently in the
present work but without the Kachanov’s assumption, the
superposition technique is employed by dividing all cracks into
two groups according to the distances of cracks to the current
crack. The cracks of adjacent group are characterized by relatively
small distances and strong effects to the current crack, while the
others, the cracks of far-field group are characterized by relatively
large distances. Correspondingly, the eigen COD of the current
crack is computed using two parts. The first part is computed by
using the fictitious tractions of adjacent cracks via the local
Eshelby matrix derived from the traction boundary integral
equations in discretized form, while the second part is computed
by using those of far-field cracks. In the proposed approach,
dividing cracks into two groups according to the distances to
the current crack is the key factor and the main improvement of
the previous work [20] to deal with the interactions among cracks
because the interactions depend on the distances of cracks so that
the high computational efficiency can be achieved, just like those
of the computational model in the eigenstrain BIE for the multiple
inclusion problems [21,22].

In the present paper, the fracture mechanics problems in plane
elasticity are considered and solved numerically using the bound-
ary point method (BPM), a discretized form of the BIE [23,24].
In Section 2, the basic equations and the local Eshelby matrix
are introduced with numerical treatments in the computational
model of eigen COD boundary integral equations. The solution
procedures are given in Section 3 with the iteration details and
the convergence criterion. In Section 4, the numerical examples
are presented. The stress intensity factors (SIFs) of the multiple
crack problems in the finite and infinite plates are solved with the
proposed approach, the eigen-COD boundary integral equations
with the iteration procedure. The numerical results in the finite
plates are compared with those using the dual boundary integral
equations (D-BIE) [10,11] and the BIE with the numerical Green’s
function (NGF) [15,16] and as well as with those in literature. The
numerical results in the infinite plates are compared with the
analytical solutions in literature. In order to show the present
work carried on, an Appendix A is attached to explain how the
terminology ‘eigen COD’ comes from and how the formulation of
the eigen COD BIE correlates with that of the eigenstrain BIE.
2. Eigen COD boundary integral equations

2.1. Basic formulations

Consider an elastic domain O with boundary G containing
multiple NC cracks. The displacements at the source point y can be
expressed by the displacement BIE with the displacement dis-
continuities, or the COD on crack surfaces, Am, as follows
[15,16,25]:

gui yð Þ ¼

Z
G
tj xð Þun

ij x,yð ÞdG xð Þ�

Z
G

uj xð Þtnij x,yð ÞdG xð Þ

�
XNC

m ¼ 1

Z
Aþm

Duj xð Þtnij x,yð ÞdA xð Þ, yA G [Oð Þ\Am, m¼ 1,. . .,NCð Þ

ð1Þ

where un
ij and tnij are the displacement and the traction funda-

mental solutions, respectively [6,10]. x is the field point. g¼1 if
yA O and g¼0.5 if yA G where G is smooth. Dui are the
displacement discontinuities, or the COD at the surfaces of
multiple cracks defined by

Dui xð Þ ¼ ui xð Þ9xAAþ �ui xð Þ9xAA� ð2Þ

where Aþ and A� represent the upper and the lower surfaces of
the crack. It is clear that if all the CODs are known, the multiple
crack problem can be solved by Eq. (1) in discrete form such as
the BEM [6] without the crack discretization [15]. The stresses
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and tractions at the point y can be computed by the stress BIE and
the traction BIE, respectively, with the displacement discontinu-
ities of multiple cracks as follows:

gsij yð Þ ¼
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uk xð Þtnijk x,yð ÞdG xð Þ
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gti yð Þ ¼ nj yð Þ
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Z
Aþm
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where nj represents the unit directional cosine at y. Correspond-
ingly, Eqs. (1), (3) and (4) are named as the eigen COD boundary
integral equations [20] where the last term in Eq. (1) can be
derived from the domain integrals in the formulation of eigen-
strain BIE [21,22] as shown in Appendix A. However, it needs to
be pointed out that all the CODs are unknown in this form of the
conventional displacement discontinuity boundary integral equa-
tions. In the present work, the CODs are to be determined step
by step with the aid of the concept of eigen COD and the local
Eshelby matrix, which will be discussed in what follows.

2.2. Eigen COD

Consider a traction-free crack A having a COD response in
infinite domain under the far-field loading s as shown in Fig. 1a,
which can be decomposed equivalently into two cases: an
enclosed crack without COD response under both the actions of
the tractions with a minus sign along its surface and the far-field
loading (Fig. 1b) and an opened crack having the same COD
response as that of case (a) under the fictitious tractions pre-
sumably applied on its surface without the far-field loading
(Fig. 1c). It needs to be pointed out that in the framework of the
BIE, the fictitious tractions can be computed numerically using
Eq. (4) without difficulty along this crack surface regardless of the
existence of crack. The eigen COD, Dui, can be defined as the crack
opening displacement of the crack A in infinite domain under the
fictitious traction, ti, acting on its surface.

If there is only one crack to be considered, after a limiting
process, the COD and the traction of the single crack in infinite
plate can be correlated with each other using the hypersingular
traction BIE derived from Eq. (4) in the global coordinate as
follows by placing the point y into the crack surface [20]:

nj yð ÞHFP

Z
Aþ

Duk xð Þtnijk x,yð ÞdA xð Þ ¼�ti yð Þ yAAþ ð5Þ
-�i
A

�

�

Fig. 1. Fictitious traction
where HFP means the Hadamard finite part. Consider the case of a
straight crack and noticed the fact of the similarity between the
two loading modes [15], the opening and the sliding, Eq. (5) can
be reduced into the following simplified form supposing the unit
crack length of 2a (a¼1):

m
2p 1�nð Þ

HFP

Z þ1

�1

di

r2 x,yð Þ
dA xð Þ ¼�ti yð Þ ð6Þ

where m and n are, respectively, the shear modulus and Poisson’s
ratio of the material, r the distance between x and y. di in Eq. (6)
stand for the COD. For the simple case of tractions such as
constant and linear distributions, the analytical solutions of COD
are available in the literature [26]. For the general case, the COD
can be solved numerically. By dropping the subscript i in Eq. (6)
and employing the explicit expression for the HFP integrals [27]
and choosing the collocation points j to be the same ones at the
Gauss stations k, the discrete form of Eq. (6) can be derived as
follows in the local coordinate:
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where wj and xj are, respectively, the Gauss weights and stations
and NG the total Gauss number. In order to compute the
derivatives of the COD in Eq. (7), a Lagrange polynomial inter-
polation can be used. Thus

d¼
XNg

k ¼ 1

lkd
k

ð8Þ

where lk represent the Lagrange polynomials of order NGþ2
which are chosen to make the expression (8) satisfy that d(�a)¼
d(þa)¼0. Rewrite (7) in matrix form for both the two modes of
opening and sliding as

a�1S0d¼ s, S0
¼

S 0

0 S

� �
ð9Þ

to compute the eigen COD in vector form, d, with the size of
2NG�1 by the fictitious traction s with the size of 2NG�1 for the
crack with the length 2a, where the constant square matrix S with
the size of NG�NG is the discretized form of Eq. (7), which can be
named as the basic crack matrix for elastostatics.
�i

n

t

�

�

s on crack surface.
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2.3. Local Eshelby matrix

For the multiple cracks problem as shown in Fig. 2, consider
one of the cracks, A, as the current crack. The fictitious tractions
on the crack A are generated not only by the far-field loading but
also affected by all other cracks in the domain, which is the well
known interactions among cracks. In the NGF approach [15,16],
the interactions of all cracks are considered simultaneously so
that the size of the matrix for computing NGF would grow very
large with the increase of the number of cracks.

To deal with the interactions among cracks for multiple
crack problems, while keeping the computing complexity within
a limited range acceptable for running the program on an
ordinary desktop computer in the present work, all cracks are
divided into two groups according to the non-dimensional radial
distances of cracks to the center of the current crack. The cracks of
adjacent group, being placed in a circle in dashed-line around the
center of the crack A, are defined as those with relatively small
distances to but having strong effects on the current crack A as
shown in Fig. 2. While the others, the cracks of far-field group are
defined as those with relatively large distances located outside
the circle. It is obvious that in general, the cracks of adjacent
group are unique for every current crack of all the cracks in the
domain once the radius of the circle in dashed line (Fig. 2) is
defined. If there is only one crack in the adjacent group when the
radius of the circle is chosen small enough, the problem of
relatively sparsely populated cracks can be treated properly
owing to the interactions among cracks, which is the case in the
previous work [20].

In an infinite space, consider only the cracks in adjacent group
of the current crack, place the point y on the crack surface and
denote the number of the cracks of adjacent group as NL, Eq. (4)
can be written as:

nj yð ÞHFP

Z
Aþl

Duk xð Þtnijk x,yð ÞdA xð Þ

þnj yð Þ
XNL

m ¼ 1,ma l

Z
Aþm

Duk xð Þtnijk x,yð ÞdA xð Þ ¼�ti yð Þ, yAAl ð10Þ

In this way, the eigen COD and the corresponding fictitious
tractions are correlated in Eq. 10 for only the cracks of adjacent
group irrespective tentatively of the effects of far-field group.
The first integral in the left hand side of Eq. (10) is
hypersingular having the same structure with that of Eq. (6)
which can be computed using Eq. (7). The second integral
in the left hand side of Eq. (10) is regular without any difficulty
in computing. Writing in matrix form after discretization,
A

Fig. 2. The group definitions for multiple cracks.
Eq. (10) becomes
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>>>>:

9>>>>=
>>>>;
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8>>>><
>>>>:

9>>>>=
>>>>;
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where ak are the half length of each crack, the off-diagonal terms
Skm are sub-matrices derived from the discrete form correspond-
ing to the regular integrals in the left hand side of Eq. (10). In fact,
the structure of the total square matrix in Eq. (11) is exactly the
same with that used in the NGF approach [15,16]. However, there
are two distinct differences to be addressed here. The first lies in
that in the NGF approach, the matrix should involve all the cracks
in the domain in consideration, resulting in a huge size of the
matrix while in the present approach, the matrix contains
only the cracks of the adjacent group leading to a small size.
The second is that in the NGF approach, the fictitious tractions are
generated by a unit point force at the source point and the
resultant COD are used to compute the displacements at the field
point, the complementary part of the NGF, embedded into the
fundamental solutions in the overall boundary integral equation
to be solved. While in the present approach, the fictitious
tractions are generated either by far-field loading in infinite
domain or by the boundary loads in finite domains. The resultant
COD, the eigen COD, are computed step by step in an iterative
procedure to be discussed later and employed for the final results
at the convergence. The eigen COD of the kth current crack, the
concerned crack, can be computed by inversing the total square
matrix in Eq. (11) then reducing it to obtain

d kð Þ ¼ Sks kð Þ, k¼ 1,2,. . .,NC ð12Þ

where the vector s(k)¼{s1, s2,y, sNL}k
T with a size of (2NG�NL)�1

are the fictitious tractions of all cracks in the adjacent group. The
vector d(k) with a size of 2NG�1 are the eigen COD of the current
crack. Sk is reduced from the inverse matrix of the total square
matrix at the left hand side of Eq. (11). In the present work, Sk is
named as the local Eshelby matrix whose size is 2NG� (2NG�NL)
supposing that the same number of Gauss points is employed for
all the cracks in the adjacent group. The local Eshelby matrix can
be considered just as the discrete form correlating the fictitious
tractions of cracks in adjacent group and the COD of the current
crack in infinite plate, derived from the hypersingular boundary
integral (10). In general, the local Eshelby matrices are all distinct
for every crack in the domain once the radius of the circle in
dashed line (Fig. 2) is defined but they are all constant depending
only on the local geometries of cracks chosen for the adjacent
group and the number of Gauss points adopted so that they need
to be computed only once. Nevertheless, for a given multiple
cracks problem, there are as many local Eshelby matrices with
small sizes as the total number of cracks to be solved. However,
from the computational point of view, solving a problem with
many small matrices would be much efficient than that of solving
a single huge matrix. More the number of cracks involved, much
greater the difference of efficiencies between the two problems
will be.

In this way, the eigen COD of the current crack should consist
of two parts. The first part can be computed by using the fictitious
tractions of adjacent cracks with the aid of the local Eshelby
matrix using Eq. (12), while the second part can be computed by
using those of far-field cracks so that the high computational
efficiency can be achieved in the proposed approach. To deter-
mine the radius of the circle in dashed line (Fig. 2) defining the
size of the near-field group should consider the density or sparsity
of cracks in concern, because the interaction among cracks is
dependent of the non-dimensional distances normalized by the
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current crack size. It is true that if only the cracks in the adjacent
group exist in an infinite domain, the CODs and the corresponding
fictitious tractions for the cracks of the adjacent group correlate
exactly by Eq. (10) or correlate approximately by Eshelby matrix
in (12), reflecting relatively strong interactions among cracks to
the current crack. While the relatively week effects of cracks to
the current crack in far-field group are treated in the iteration
procedures, which is considered to be a key improvement to the
previous work [20].

2.4. Stress intensity factors

Owing to that the existence of the definite correlations among
the COD, the fictitious traction and the stress intensity factor (SIF)
of a crack, in the present work, the SIFs are computed by using the
fictitious tractions to avoid the computation of stresses or dis-
placements near crack tips as is conventionally done [7,8,14–16].
First, by defining, respectively, the normal direction as n (the
opening mode) and the tangential direction (the shear mode) as t

with respect to the crack in the local coordinate (Fig. 1c), the
fictitious tractions in either direction can be fitted approximately
by the polynomial of order NP in the local coordinates as follows
using the nodal values at Gauss points:

t¼ c0þc1
Z
a
þc2

Z
a

� 	2

þ � � � þcNP

Z
a

� 	NP

, ZA �a,þa½ � ð13Þ

where ci are the coefficients of the polynomial to be determined.
Then the SIF at the two tips of a crack can easily be computed
analytically [26] after some derivations using the coefficients, ci, of
the same polynomial expansion in Eq. (13) for the tractions along
the crack surface, thus avoiding the troubles of computing stresses
or displacements near the crack tip:

KR

KL

( )
¼ c0þ

1

2
7c1þc2½ �þ

1U3

2U4
7c3þc4½ �




þ � � � þ
1U3 � � � NP�1ð Þ

2U4 � � �NP
7cNP�1þcNP

� �
 ffiffiffiffiffiffi
pa
p

ð14Þ

where KR and KL represent the SIF at the right and left tips of the
crack, respectively.
3. Solution procedures

It is clear that the unknown COD as well as the fictitious
tractions of a crack in a multiple-cracked domain are the
responses to the structure geometry, the loading profile, the
geometries, the quantities and the distributions of cracks, having
mutual interactions among them. Hence in the frame work of the
eigen COD boundary integral equations, the problem should be
solved step by step in an initiative fashion. For the multiple-
cracked domain under loadings, the solution procedure consists
mainly of four stages in the proposed approach, i.e., the initiation,
the iteration, the convergence check and the post process stages.

3.1. The initiation stage
(i)
 Initializing all the data related to the domain, boundary
conditions and cracks, etc.;
(ii)
 Computing all the local Eshelby matrices, Sk;

(iii)
 Solving the boundary unknowns using the displacement eigen

COD boundary Eq. (1) with the prescribed boundary conditions
by neglecting tentatively all the cracks in domain (this step is
applicable for crack problems in finite domain).
(iv)
 Computing the fictitious tractions of all cracks using the
traction boundary Eq. (4) by neglecting tentatively all the
cracks in domain;
(v)
 Computing the initial SIF using Eq. (14) with the fictitious
tractions for all cracks;
3.2. Iteration procedures

In this block, the eigen COD of all the cracks are computed
sequentially one at a time with the fictitious tractions, consisting
of two parts as follows:
i)
 The first part is computed using the fictitious tractions of the
current crack and cracks in adjacent group via the local
Eshelby matrix using Eq. (12);
ii)
 The second part is computed by using the fictitious tractions of
all the cracks in far-field group excluding those of the current
and the adjacent cracks, using a modified traction equation of
Eq. (4) as follows:

ti yAAþl
� �

¼ nj yð Þ

Z
G
tk xð Þun

ijk x,yð ÞdG xð Þ�nj yð Þ

Z
G

uk xð Þtnijk x,yð ÞdG xð Þ

�nj yð Þ
XNC

m ¼ 1, m=2Nl
L

Z
Aþm

Duk xð Þtnijk x,yð ÞdA xð Þ, l¼ 1,. . .,NC

ð15Þ

where NL
l represents the cracks of adjacent group centered at the

current crack l. Then computing the corresponding SIF of all
cracks using Eq. (14);

3.3. Convergence check

The convergence criterion can be chosen as that the maximum
difference of the values of SIF between two consecutive computa-
tions is no greater than that of prescribed value. Define the
maximum iteration error as

Kmax ¼max 9K kð Þ
�K k�1ð Þ9 ð16Þ

which is the maximum difference of the SIF between the two
iterations where k is the number of iteration count. The conver-
gence criterion in the present study is chosen as follows:

Kmax=s
ffiffiffiffiffiffi
pa
p

r10�3
ð17Þ

It needs to be pointed out that the expression of Eq. (17) is the
non-dimensional SIF normalized by that of the single crack in infinite
plate, which can be realized as a kind of relative error to some extent.
i)
 If the criterion is not satisfied, solve the boundary unknowns
again with the eigen COD of all cracks then return to the
previous step (Iteration procedures);
ii)
 If the criterion is satisfied, go to the next step (Post processes);

3.4. Post processes

The post processes can be carried out according to the
requirements or interests of the research as follows:
i)
 Computing the overall properties such as the rigidities,
Poisson rations, anisotropies, etc.;
ii)
 Computing the fracture properties combined with the fracture
criteria and the maximum SIF computed;
iii)
 Investigating the details such as the local stress or strain
fields, etc.
The solution procedures of the present approach are summar-
ized in the flow chart as shown in Fig. 3.
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Fig. 4. A plate in tension with two cracks of equal size.

Fig. 5. Normalized mode-I stress intensity factors as a function of tilting angle y
for the plate in tension with two cracks.

Fig. 6. Normalized mode-II stress intensity factors as a function of angle y for the
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Fig. 7. A square plate in tension with three inclined cracks.
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Fig. 3. The flow chart of the solution procedures.
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4. Numerical examples

In the numerical examples, the stress intensity factors (SIFs) of
the multiple crack problems in the finite and infinite plates are
solved with the proposed approach, the eigen-COD boundary
integral equations with the iteration procedure (Fig. 3) using
the boundary point method (BPM), a discrete form of the BIE
[23,24]. The numerical results in the finite plates are compared
with those using the dual boundary integral equations (D-BIE)
[10,11] and the BIE with the numerical Green’s function (NGF)
[15,16] and as well as with those in literature. The numerical
results in the infinite plates are compared with the analytical
solutions in literature. The placement of the nodes along the crack
line are chosen as the Chebyshev–Gauss–Lobatto distribution [28]
in the D-BIE approach and the Gauss distributions in both of the
NGF and the eigen-COD approaches.

4.1. Stress intensity factors in finite plates

4.1.1. A plate with two cracks

The purpose of the first example in finite plates presented
is for the verification of the computer programs of the three
approaches, the eigen-COD, the D-BIE and the NGF. The plate in
tension with two cracks (the total crack number NC¼2) of equal
size as shown in Fig. 4 was previously analyzed by Chen and Chen
[25] using the D-BIE method. In this example, the outer boundary
are discretized by using 124 nodes, in all the three approaches.
The cracks are discretized by using 17 nodes in the D-BIE and
using 13 nodes in both of the NGF and the eigen COD approaches.
As there is no analytical results for this example, the results using
the most popular D-BIE method serve as the control so that more
nodes is used (17 nodes). The number of cracks in adjacent group
is set as NL¼2, the same as that of the total cracks (NL¼NC) in the
eigen-COD approach.



Fig. 9. Normalized mode-II stress intensity factors as a function of crack extension

Da at the tip B of the middle crack for the square plate with three inclined cracks.

Table 1
The CPU time (s) of the three approaches.

D-BIE NGF Eigen COD

20.490 10.561 3.229

Fig. 10. The square plates in tension with multiple cra

Fig. 8. Normalized mode-I stress intensity factors as a function of crack extension

Da at the tip B of the middle crack for the square plate with three inclined cracks.
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The computed mode-I and mode-II stress intensity factors at
the crack tips A and B are presented in Figs. 5 and 6, respectively,
showing that the computed results of the three algorithms are
almost the same with each other and they are all in good
agreement with the previous analysis by Chen and Chen [25]. It
is seen clearly that the accuracy of the proposed approach has
been greatly improved in comparison with the previous work
[20]. The effectiveness of the eigen COD BIE is verified.
4.1.2. A plate with three cracks

The second example in finite plates presented is a square plate
(W¼H¼20, S¼5) in tension with three cracks (NC¼3) with the
same incline angles y¼451as shown Fig. 7. The half lengths are
a¼1 for all three cracks at initial stage. The stress intensity factors
at the six crack tips are computed when the middle crack extends
by Da at the tip B (Fig. 7) using the three approaches. The outer
boundary are discretized by using 200 nodes in all the three
approaches. The cracks are discretized by using 21 nodes in the
D-BIE and using 13 nodes in both of the NGF and the eigen COD
approaches in this example. The number of cracks in adjacent
group is set as NL¼3, the same as that of the total cracks (NL¼NC)
in this example in the eigen COD approach.

The computed mode-I and mode-II stress intensity factors at
the six crack tips are presented in Figs. 8 and 9, respectively,
showing that the computed results of the eigen COD approach are
in agreement with the other two approaches, which verifies the
proposed approach. It is seen from Fig. 8 that the mode-I stress
intensity factors at both of the tips C and F of the right crack
(Fig. 7) decrease with the increase of crack extension, Da, at the
tip B of the middle crack, showing the shielding effect of the
middle crack on the right crack.
cks of equal size. (a) NC¼9 (b) NC¼25 (c) NC¼49.

Table 2
Comparisom of the mormalized SIF using the three approaches.

NC/n y Algorithm K1,R/s
ffiffiffiffiffiffi
pa
p

K2,R/s
ffiffiffiffiffiffi
pa
p

K1,L/s
ffiffiffiffiffiffi
pa
p

K2,L/s
ffiffiffiffiffiffi
pa
p

9/3 55.861 Eigen COD 0.33727 0.46582 0.37067 0.47128

D-BIE 0.33769 0.46597 0.37127 0.47139

NGF 0.33831 0.46563 0.36927 0.47109

25/5 �55.751 Eigen COD 0.34980 �0.42286 0.35284 �0.40689

D-BIE 0.34882 �0.42564 0.35251 �0.40931

NGF 0.32567 �0.41479 0.32739 �0.39900

49/7 �83.081 Eigen COD 0.05480 �0.12166 0.03214 �0.12559

D-BIE 0.05449 �0.11977 0.03334 �0.12378

NGF 0.04912 �0.11936 0.02765 �0.12350

81/9 12.201 Eigen COD 0.95735 0.20245 0.96036 0.19772

D-BIE 0.95837 0.20377 0.96119 0.19941

NGF 0.93178 0.19443 0.94492 0.19008

121/11 60.501 Eigen COD 0.24488 0.40926 0.23208 0.40980

D-BIE 0.24355 0.41029 0.23128 0.41148

NGF 0.23939 0.40580 0.22916 0.40616



Fig. 11. The CPU time as a function of the total number of cracks, NC, for the three

approaches.

Fig. 12. The normalized stress intensity factors as a function of a/b for one row of

periodical collinear cracks in horizontal line.

Fig. 13. The relative errors of SIF as a function of a/b using different number of cr
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It is seen from Fig. 9 that the mode-II stress intensity factors at
both of the tips C and F of the right crack (Fig. 7) behave in a more
complicated manner with the growth of crack extension, Da, at the
tip B of the middle crack. It is considered that the effect of the
interaction between the middle and the right cracks becomes
gradually stronger when the crack extension, Da, is not too large so
that the mode-II stress intensity factors increase at both of the tips C

and F of the right crack (Fig. 7), but the shielding effect becomes
predominant when the size of Da grows large so that the mode-II
stress intensity factors decrease at both the tips C and F of the
right crack.

The CPU times of the three approaches, using the desk-top
computer Dell with Intel Pentium Dual CPU, 1.60 GHz, are
compared in Table 1, showing the high efficiency of the proposed
eigen COD algorithm. This is because that the crack unknowns
appear in the discrete algebraic equations in the D-BIE algorithm,
resulting in a greater size of the system matrix. In contrast, the
crack unknowns do not appear in the discrete algebraic equations
in both of the NGF and the eigen COD approaches, resulting in
relatively smaller sizes of the system matrices. In the NGF
approach, however, the complementary function need to be
solved numerically and embedded in the NGF to modify the
acks in adjacent group with Gauss point numbers, NG¼7 (a) and NG¼11 (b).

Fig. 14. The normalized stress intensity factors as a function of a/(aþh) for one

column of periodical cracks in vertical line.
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entries of the system matrix. While the system matrix is
remained the same in the iteration process in the eigen COD
approach and the convergence can be reached generally by 3–4
iterations so that the efficiency of the eigen COD approach is
higher than that of the NGF approach. This example verifies the
effectiveness of the eigen COD approach.
Table 3
The normalized SIF of one row of echelon cracks (Fig. 16).

y a/d¼0.5

KI/s
ffiffiffiffiffiffi
pa
p

KII/s
ffiffiffiffiffiffi
pa
p

Ref. [30] Computed Ref. [30] Computed

15 1.1685 1.1686 0.0473 0.0473

30 1.1822 1.1823 �0.0230 �0.0230

45 1.0919 1.0918 �0.1182 �0.1183

60 0.9509 0.9507 �0.1477 �0.1479

75 0.8340 0.8335 �0.0979 �0.0981

2a

2d

�

�

�

Fig. 16. One row of echelon cracks with length 2a and spacing 2d under a uniform

far-field tension s perpendicular to the crack faces.

Fig. 15. The absolute errors of SIF as a function of a/h using different number of

cracks in adjacent group with Gauss point numbers, NG¼7.
4.1.3. A plate with multiple cracks

The third example in finite plates presented are the square
plates in tension with multiple cracks, some of them as shown in
Fig. 10. The total number of cracks are chosen as NC¼(2nþ1)2,
n¼1,2,y, where n is an integer. The size of each crack is taken as
2a¼0.4W/n, where W¼H are the width and the height of the
plate, respectively. The Gauss point number used is NG¼13. The
orientation of the cracks are generated using the random function
in the computer program. The stress intensity factors of the crack
at the center of the plate are computed by using the three
approaches. The number of cracks in adjacent group is set as
NL¼9 in the eigen COD approach.

The stress intensity factors of the crack at the plate center are
listed and compared in Table 2 among the three approaches with
the total crack number NC¼9, 25, 49, 81 and 121, showing that
the results of the propoed approach are in agreement with the
D-BIE and the NGF approaches, verifying the effectiveness of the
proposed eigen COD approach.

The CPU time are compared in Fig. 11 for the three approaches,
where the maximum total crack numbers are 289 for the D-BIE
and the NGF approaches, respectively, but in contrast, the max-
imum total cracks computed is 5041 for eigen COD approach.
Fig. 11 shows that the efficiency of the proposed eigen COD
approach is much higher than that of the other two approaches
when the total number of cracks grows larger. This is because, as
mentioned previously, the size of the system matrix of the D-BIE
approach increases with the total crack number, while the sizes of
the system matrices of either the NGF or the eigen COD
approaches remain unchanged. However, in the NGF approach,
the size of the matrix to determine the complementary solution
for the NGF increases also with the total crack number. Much
computing time is requred for solving this matrix for the
complementary solution. In addition, after their solution, the
complementary functions, need to be embedded into the system
matrix to modify the entries of it, also taking much computing
time, showing that in view of the computational efficiency, the
NGF approach is no better than that of the D-BIE approach in the
case of a large number of cracks. However, from the computa-
tional point of view, solving a problem with many small matrices,
which is just the case of the eigen-COD approach, would be much
efficient than that of solving a single huge matrix, which are the
cases of the D-BIE and the NGF approaches. More the number of
cracks involved, much greater the difference of efficiencies
between the two problems will be, which is the main factor
resulting in the high efficiency of the proposed approach.
4.2. Stress intensity factors in infinite plates

4.2.1. One row of periodical collinear cracks in horizontal line

The first example in infinite plates presented is a row of
periodic equal cracks under a far-field tension perpendicular to
a/d¼1.0

KI/s
ffiffiffiffiffiffi
pa
p

KII/s
ffiffiffiffiffiffi
pa
p

Ref. [30] Computed Ref. [30] Computed

2.7947 2.7588 �0.3258 �0.3279

1.7666 1.7525 �0.4705 �0.4674

1.2115 1.2064 �0.4769 �0.4746

0.8521 0.8500 �0.3796 �0.3790

0.6407 0.6389 �0.2090 �0.2091
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the crack faces. In the computation, up to 2001 cracks (NC¼2001)
are taken into consideration instead of using the infinite number of
cracks. The normalized stress intensity factors of crack tip are
calculated by the proposed approach and by the analytic solution
of Sih [29] are compared in Fig. 12, showing a good agreement
between the numerical and the analytical solutions. A dashed line
given in Fig. 12 is the computing limit, that over this limit, no
reasonable result can be obtained in the previous work [20]
because of the interaction among cracks. However, with the local
Eshelby matrix being introduced in the present work, the treat-
ment of the interaction among cracks has been greatly improved.
B
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Fig. 17. The eight rows of periodical cracks with different decline angles.

Table 4
Normalized SIF of cracks in line A (Fig. 17, h/d¼0.5, NL¼8, NG¼13).

a/d K1,L/s
ffiffiffiffiffiffi
pa
p

K1,R/s
ffiffiffiffiffiffi
pa
p

Ref. [30] Computed Ref. [30] Computed

0.5 0.8488 0.8484 0.7350 0.7344

0.6 0.9228 0.9225 0.7645 0.7639

0.7 1.0200 1.0195 0.8105 0.8094

0.8 1.1362 1.1356 0.8612 0.8590

0.9 1.2618 1.2616 0.8874 0.8813

Table 5
Normalized SIF of cracks in line B (Fig. 17, h/d¼0.5, NL¼8, NG¼13).

a/d K1,L/s
ffiffiffiffiffiffi
pa
p

K1,R/s
ffiffiffiffiffiffi
pa
p

Ref. [30] Computed Ref. [30] Computed

0.5 0.6779 0.6772 0.6771 0.6763

0.6 0.6924 0.6916 0.6886 0.6878

0.7 0.7193 0.7179 0.7104 0.7090

0.8 0.7445 0.7424 0.7260 0.7237

0.9 0.7299 0.7253 0.6874 0.6840

Table 6
Normalized SIF of cracks in line C (Fig. 17, h/d¼0.5, NL¼8, NG¼13).

a/d K1,L/s
ffiffiffiffiffiffi
pa
p

K1,R/s
ffiffiffiffiffiffi
pa
p

Ref. [30] Computed Ref. [30] Computed

0.5 0.6858 0.6851 0.6862 0.6855

0.6 0.7042 0.7034 0.7044 0.7036

0.7 0.7352 0.7345 0.7354 0.7340

0.8 0.7685 0.7664 0.7662 0.7640

0.9 0.7715 0.7662 0.7632 0.7581
The relative errors of SIF as a function of a/b are presented in
Fig. 13 with different number of cracks in adjacent group, NL, using
Gauss point numbers, NG¼7 (a) and NG¼11 (b), respectively. It can
be seen that in general, the increase of the Gauss point numbers
can increase the accuracy of the numerical results. The interactions
among cracks increase with the ration of a/b, the effects of which
can be compensated by increasing the number of cracks in adjacent
group so that the cost increases correspondingly.

4.2.2. One column of periodical cracks in vertical line

The second example in infinite plates presented is a column of
periodic equal cracks in vertical line under a far-field tension
perpendicular to the crack faces. In the computation, up to 2001
cracks (NC¼2001) are taken into consideration instead of using
the infinite number of cracks. The normalized stress intensity
factors of crack tip are calculated by the proposed approach and
by the estimated solution of Tada et al. [26] are compared in
Fig. 14, showing also a good agreement between the numerical
and the estimated solutions. A dashed line given in Fig. 14 is also
the computing limit, that over this limit, no reasonable result can
be obtained in the previous work [20] because of the interaction
among cracks. However, with the local Eshelby matrix being
introduced in the present work, the treatment of the interaction
among cracks has been greatly improved.

Taking the tabulated data by Wang [30] for one column of
periodical cracks in vertical line as the control, the absolute errors of
SIF as a function of a/h are presented in Fig. 15 with different
K2,L/s
ffiffiffiffiffiffi
pa
p

K2,R/s
ffiffiffiffiffiffi
pa
p

Ref. [30] Computed Ref. [30] Computed

0.3668 0.3666 0.4345 0.4343

0.3709 0.3708 0.4703 0.4701

0.3960 0.3958 0.5329 0.5323

0.4504 0.4501 0.6315 0.6307

0.5375 0.5388 0.7792 0.7783

K2,L/s
ffiffiffiffiffiffi
pa
p

K2,R/s
ffiffiffiffiffiffi
pa
p

Ref. [30] Computed Ref. [30] Computed

�0.3743 �0.3739 �0.3850 �0.3847

�0.4006 �0.4003 �0.4189 �0.4185

�0.4549 �0.4542 �0.4830 �0.4823

�0.5443 �0.5432 �0.5854 �0.5842

�0.6799 �0.6805 �0.7405 �0.7408

K2,L/s
ffiffiffiffiffiffi
pa
p

K2,R/s
ffiffiffiffiffiffi
pa
p

Ref. [30] Computed Ref. [30] Computed

0.3758 0.3754 0.3774 0.3770

0.4040 0.4037 0.4069 0.4065

0.4602 0.4595 0.4649 0.4642

0.5514 0.5503 0.5589 0.5578

0.6881 0.6885 0.7010 0.7014



Fig. 18. The absolute errors of SIF in eight rows of periodical cracks with different

decline angles as a function of total crack number, NC (Fig. 17).
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Fig. 19. The one row of periodic two-crack groups in an inclined position.
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number of cracks in adjacent group, NL, using Gauss point number,
NG¼7. It can be seen that the interactions among cracks increase
with the ratio of a/h, the effects of which can be compensated by
increasing the number of cracks in adjacent group so that the cost
increases correspondingly. It is noticed by comparing Fig. 14 and
Fig. 12 that the interactions among cracks arranged in parallel side
by side in a column vertical line are stronger than those of cracks
arranged in a collinear row of horizontal line.

4.2.3. One row of periodical echelon cracks

The third example presented is the common case of single
periodic cracks, the one row of echelon cracks in an infinite plate
under a far-field tension stress s perpendicular to the crack
surfaces as shown in Fig. 16. In the computation, up to 2001
cracks (NC¼2001) are taken into consideration instead of using
the infinite number of cracks. The normalized stress intensity
factors of crack tip are calculated by the proposed approach in
comparison with those by Wang [30] as listed in Table 3 where
the agreement between the two can be seen.

4.2.4. Eight rows of periodical cracks with different decline angles

The fourth example presented is the eight rows of periodical
cracks with different decline angles in an infinite plate under a
far-field tension stress in vertical direction as shown in Fig. 17.
In the computation, up to 16008 cracks (NC¼16008) are taken
into consideration instead of using the infinite number of
cracks. The normalized stress intensity factors of crack tip
in the lines A, B, C and D are calculated by the proposed approach
in comparison with those by Wang [30] as listed in Table 4
through 7 where the agreement between the two can also be
seen. Tables 5–7

The absolute errors of SIF as well as the CPU time are
presented in Fig. 18 for the eight rows of periodical cracks with
different decline angles as a function of total crack number, NC,
showing that the errors decrease monotonically to an acceptable
level with the increase of the total crack number, NC, for the
infinite cracks in infinite plate. The CPU time increases almost
linearly with the number of NC when NC is large, showing the high
efficiency of the proposed approach.

4.2.5. One row of periodical two-crack groups in an inclined position

The fifth example presented is the one row of periodical two-
crack groups in an inclined position under a far-field tension
stress in vertical direction in infinite plate as shown in Fig. 19. In
the computation, up to 4002 cracks (NC¼4002) are taken into
consideration instead of using the infinite number of cracks. The
number of Gauss points used is chosen as NG¼9 and the number
of cracks in adjacent group is chosen as NL¼10 in the computa-
tion. The normalized stress intensity factors at the crack tips A, B,
C and D (Fig. 19) are calculated by the proposed approach in
comparison with those by Chen [31] as shown in Fig. 20. It is seen
from Fig. 20 that the computed results are in good agreement
with those by Chen [31], verifying the effectiveness and the
accuracy of the proposed approach.
Table 7
Normalized SIF of cracks in line D (Fig. 17, h/d¼0.5, NL¼8, NG¼13).

a/d K1,L/s
ffiffiffiffiffiffi
pa
p

K2,R/s
ffiffiffiffiffiffi
pa
p

Ref. [30] Computed Ref. [30] Computed

0.5 0.6851 0.6843 0.6851 0.6844

0.6 0.7026 0.7018 0.7027 0.7019

0.7 0.7329 0.7314 0.7329 0.7314

0.8 0.7626 0.7603 0.7622 0.7598

0.9 0.7570 0.7520 0.7549 0.7500
4.2.6. One row of periodical two-crack groups in a stacked position

The sixth example presented is the one row periodical two-
crack groups in a stacked position under a far-field tension stress
in vertical direction in infinite plate as shown in Fig. 21 where 2a/
d¼0.9 is used. In the computation, up to 4002 cracks (NC¼4002)
are taken into consideration instead of using the infinite number
of cracks. The number of Gauss points used is chosen as NG¼7 and
K2,L/s
ffiffiffiffiffiffi
pa
p

K2,R/s
ffiffiffiffiffiffi
pa
p

Ref. [30] Computed Ref. [30] Computed

�0.3770 �0.3767 �0.3773 �0.3769

�0.4061 �0.4057 �0.4066 �0.4062

�0.4633 �0.4626 �0.4642 �0.4635

�0.5562 �0.5550 �0.5578 �0.5566

�0.6962 �0.6966 �0.6994 �0.6999
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the number of cracks in adjacent group is chosen as NL¼14 in the
computation. The normalized stress intensity factors in the modes
I and II at the crack tips A, B, C and D (Fig. 21) are calculated by the
proposed approach in comparison with those by Chen [31] as
shown in Figs. 22 and 23, respectively. It is seen from both of
Figs. 22 and 23 that the computed results are in good agreement
Fig. 22. The mode I normalized SIF for one row of periodical two-crack groups in a

stacked position (Fig. 21).

Fig. 23. The mode II normalized SIF for one row of periodical two-crack groups in

a stacked position (Fig. 21).
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Fig. 21. The one row of periodical two-crack groups in a stacked position.

Fig. 20. The normalized SIF for one row of periodic two-crack groups in an inclined

position (Fig. 19).
with those by Chen [31], verifying again the effectiveness and
accuracy of the proposed approach.
5. Conclusion

A newly developed computational approach based on the
eigen COD BIEs is proposed for the analysis of elastic solids with
large number of cracks. The eigen COD is defined as the crack
opening displacement of a crack in infinite domain under the
fictitious traction acting on the crack surface. With this approach,
the multiple crack problem is solved by using the conventional
displacement discontinuity BIE in an iterative fashion to deter-
mine all the unknown CODs step by step with a small size of
system matrix. The interactions among cracks are dealt with by
two parts according to the distances of cracks to the current crack.
The strong effects of cracks in adjacent group were treated with
the aid of the local Eshelby matrix derived from the traction BIEs
in discrete form. While the relatively week effects of cracks in far-
field group were treated in the iteration procedures. The effec-
tiveness and the accuracy of the proposed approach were verified
by computing the stress intensity factors in a number of numer-
ical examples of cracks, up to several thousands in number, in
both the finite and infinite plates with regard to the accuracies
and efficiencies with those by the other numerical approaches of
the D-BIE and the NGF as well as the analytical solutions in the
literature.
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Appendix A

The concept of the eigen crack opening displacements (COD)
are firstly introduced in [20] in the form of Eq. (1), the displace-
ment BIE with the displacement discontinuities, or the COD on
crack surfaces [15,16,25]. In addition to the conventional deriva-
tion of the displacement BIE, however, the crack integral, the last
term in Eq. (1) correlates intimately with the domain integral in
the formulation of eigen-strain BIEs [21,22], from which the
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Fig. A1. Schematics of the correlation between the eigen COD and the eigenstrain. (a) A narrow shape as an interior problem; (b) The corresponding exterior problem;

(c) The limit process when the shortest dimension reducing to zero.
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terminology eigen COD comes:

gui yð Þ ¼

Z
G
tj xð Þun

ij x,yð ÞdG xð Þ�

Z
G

uj xð Þtnij x,yð ÞdG xð Þ

�
XNI

I ¼ 1

Z
DOI

e0
jk xð Þsn

ijk x,yð ÞdO xð Þ, ðA1Þ

where e0
jk are the eigenstrains in the sub-domain DOI, NI the total

number of the inhomogeneity. Now consider only the domain
integral of one single inhomogeneity with a narrow shape in an
infinite medium, occupying the sub-domain DO with the bound-
ary Aint¼Aþint[A�int as an interior problem as shown in Fig. A1(a).

I¼

Z
DO
e0

jk xð Þsn

ijk x,yð ÞdO xð Þ ðA2Þ

Suppose that the elastic modulus of the inhomogeneity is zero,
i.e., the empty hole. Employing the geometric relation between
strains and displacements and using the Gaussian divergence
theorem, the domain integral becomes

I¼
1

2

Z
DO
½u0

j,k xð Þþu0
k,j xð Þ�sn

ijk x,yð ÞdO xð Þ

¼
1

2

Z
Aint

u0
j nkþu0

knj

� 	
sn

ijkdA xð Þ�
1

2

Z
DO

u0
j s

n

ijk,kþu0
ks

n

ijk,j

� 	
dO xð Þ

ðA3Þ

where u0
j are the displacements corresponding to the eigenstrain

e0
jk. nk the unit outward normal. With the Cauchy relation
tnij¼sn

ijknk and noticed that the second integral above in Eq. (A3)
should be zero since sn

ijk,k¼sn
ijk,j¼0, so that

I¼

Z
Aint

u0
j xð Þtnij x,yð ÞdA xð Þ ðA4Þ

Decomposing the boundary into the upper and lower parts

by Aint¼Aþint[A�int and using the relation tnij x,yð Þ9yADAþint
¼

�tnij x,yð Þ9yADA�int
when taking a limit process of DO-0 by letting

the shortest dimension of the narrow hole reduce to zero, the
integral becomes

I¼

Z
Aþint

uþj xð Þtnij x,yð ÞdA xð Þþ

Z
A-

int

u�j xð Þtnij x,yð ÞdA xð Þ

¼

Z
Aþint

uþj �u�j

� 	
tnij x,yð ÞdA xð Þ

¼

Z
Aþint

Duj xð Þtnij x,yð ÞdA xð Þ ðA5Þ

where Duk is the eigen-COD computed by Duk¼uþk �u�k , uþk and
u�k being the displacements on the upper and the lower bound-
aries, Aþint and A�int, respectively. The interior problem can be
changed equivalently to the corresponding exterior problem as
shown in Fig. A1(b):

I¼�

Z
Aþext

Duj xð Þtnij x,yð ÞdA xð Þ ðA6Þ

Finally after taking the limit process DO-0 by letting the
shortest dimension of the narrow hole reduce to zero as shown in
Fig. A1(c), the original domain integral can be written as a crack
integral along the crack line with the eigen-COD, Duk, expressed
in concise form as follows

I¼�

Z
Aþ

Duj xð Þtnij x,yð ÞdA xð Þ ðA7Þ

In this way, for an elastic domain O with boundary G contain-
ing multiple cracks, the formulation of eigen-COD BIE (Eq. (1)) can
be derived directly from the eigen-strain BIE (Eq. (Aa)) containing
multiple zero-modulus inhomogeneities.
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