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a b s t r a c t

Constant elements offer many advantages as compared with other higher-order elements in the boundary
element method (BEM). With the use of constant elements, integrals in the BEM can be calculated
accurately with analytical integrations and no corner problems need to be addressed. These features can
make fast solution methods for the BEM (such as the fast multipole, adaptive cross approximation, and pre-
corrected fast Fourier transform methods) especially efficient in computation. However, it is well known
that the collocation BEM with constant elements is not adequate for solving beam bending problems due
to the slow convergence or lack of convergence in the BEM solutions. In this study, we quantify this
assertion using simple beam models and applying the fast multipole BEM code so that a large number of
elements can be used. It is found that the BEM solutions do converge numerically to analytical solutions.
However, the convergence rate is very slow, in the order of h to the power of 0.55–0.63, where h is the
element size. Some possible reasons for the slow convergence are discussed in this paper.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The constant elements have been applied in the boundary
element method (BEM) to solve elasticity problems ever since the
inception of the method in the early 1960s [1,2]. Constant
elements are introduced in almost of all the textbooks on the
BEM [3–7]. However, it has long been speculated that the BEM
with constant elements converge very slowly for solving beam
bending problems or it may not converge at all for such problems.
This can cause problems in testing an elasticity BEM code. With
the same code, satisfactory BEM results can be obtained when
bulky-shaped domains are considered, while poor results are
observed with no obvious reasons when slender structures
applied with bending loads are considered. With the conventional
BEM, the model size is limited to a few thousands of elements and
thus the convergence study cannot be conducted fully on a
desktop computer. This may be the main reason that no detailed
results have been reported in the literature on the convergence of
the collocation BEM with constant elements for solving beam
bending problems.

With the developments of the fast multipole, adaptive cross
approximation, and other fast solution methods for the BEM [8],
we are now able to conduct detailed numerical convergence study
on the constant element BEM for solving beam bending problems

with the number of elements close to one million on a desktop
computer. Therefore, it is possible now to answer the convergence
question with some numerical studies about the elasticity BEM
with constant elements in solving beam bending problems.

This paper presents some BEM results with large-scale 2D
models of simple beam bending problems to provide some
quantitative answers to the slow convergence question regarding
the constant element BEM for beam bending problems. Discus-
sions on possible reasons of this slow convergence are also
provided based on the numerical results. Some conclusions are
drawn based on the numerical results.

2. Setup of the study

The BEM is based on the following direct boundary integral
equation (BIE) for general 2D elastostatic problems [3–7]:

1
2
uiðxÞ ¼

Z
S
½Uijðx; yÞtjðyÞ�Tijðx; yÞujðyÞ�dSðyÞ; 8xAS; ð1Þ

where ui and ti are the displacement and traction, respectively; S is
the boundary of domain V; S is assumed to be smooth around x;
and i; j¼ 1; 2 in 2D cases. The two kernel functions Uijðx; yÞ and
Tijðx; yÞ are the displacement and traction components, respectively,
in the fundamental solution (also called Kelvin's solution) as given
in Refs. [3–7]. The U kernel is weakly singular, while the T kernel is
strongly singular requiring the integral to be evaluated in the sense
of Cauchy-principal value (CPV). With constant elements, all the
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integrals (including the CPV integrals) with these two kernels can
be computed analytically in the BEM [7].

In this study, the fast multipole BEM code for 2D elasticity
problems reported in Refs. [7,9] is used to solve BIE (1). In this 2D
elasticity code, constant elements are used and all the integrals of
the kernels and moments in the fast multipole BEM are evaluated
analytically [7]. Therefore, there are no difficulties with the nearly
singular integrals when the domain is thin as in the case of a
beam. This fast multipole BEM code has been tested extensively
for 2D stress analysis and consistently delivers the same results as
with the conventional BEM code. Very good results have been
obtained for stress concentration problems on regular domains
(e.g., a square plate with a hole at the center) [7,9].

The beam bending problem studied is sketched in Fig. 1. The
cantilever beam has a length L, height H, width B (not shown), and
a lateral point force P applied at the free end. In this study, we
assume that H¼1, B¼1, P¼1, Young's modulus E¼1, and Poisson's
ratio ν¼0.3. Three cases are studied with the length ratio L/H¼5,
10 and 20. Based on the 2D elasticity theory (plane stress), the
analytical solution of the maximum deflection wmax at (L, 0)
location is given in Ref. [10] (see Section 21):

wmax ¼
PL3

3EI
þPH2L

8GI
ð2Þ

where I is the second moment of area (or the moment of inertia of
the cross sectional area), and G is the shear modulus. This
analytical solution accounts for the shear deformation and is
therefore valid for both short and slender beams as the ones
studied here.

We start the BEM mesh with the element size¼1 and then
reduce the element size repeatedly until the element size reaches
0.0001, where the BEM results for all the three cases (L/H¼5, 10,
20) give the relative errors around or below 1% for the maximum
deflection. For the case L/H¼20, the smallest BEM model has 42
elements and 84 DOFs (degrees of freedom), while the largest BEM
model has 420,000 elements and 840,000 DOFs.

3. Numerical results

Fig. 2 shows the relative error in the computed maximum
deflection (at x¼L, y¼0) for the three cases (L/H¼5, 10, 20) using
the BEM. As the number of elements increases, the errors in the
BEM results do reduce, albeit at a very slow fashion. This is
especially true for the slender beam case with L/H¼20, for which
the slowest convergence is observed and the bending behavior
dominates. For the error to be near or below 10%, it took a model
with 1200 DOFs for the case with L/H¼5, with 8800 DOFs for the
case of L/H¼10, and with 42,000 DOFs for the case of L/H¼20.
When the number of DOFs reaches 840,000, the error reduces to
0.3% for the case of L/H¼20, which is considered extremely slow
for convergence with the BEM.

To see the convergence rate of the BEM with constant elements
in the three cases, we plot the relative errors in the computed
maximum deflection against the element size, as shown in Fig. 3.
The plots are in log–log scale, so that the slopes of the trendlines of
the curves represent the convergence rates, which are also shown
in the inserted formulas. It can be seen that for all the three cases,

the convergence rates are between Oðh0:55Þ and Oðh0:63Þ, where h is
the element size.

In Fig. 4, we plot the deflection along the axis of the beam and
compare the BEM results with the analytical one (the values are
dimensionless). Again, large discrepancies in the BEM results
and the analytical solution are observed. Acceptable results are
achieved only when the number of elements reaches 420,000 (the
number of DOFs¼840,000), where the BEM curve finally
approaches to the analytical solution.
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Fig. 1. A cantilever beam with a point load at the end.
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Fig. 2. Relative errors of the maximum deflections for the three beam models.
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Fig. 3. Convergence rates of the BEM solutions for the three beam models.
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Fig. 4. Plot of the deflection computed using the BEM for the model with L/H¼20.
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To confirm that this slow convergence of the BEM with
constant elements occurs only with beam bending type of pro-
blems, we use the same beam model with the length ratio L/H¼20
and change the load to a tension load, as shown in Fig. 5, where
the negative pressure load p is set as 1. All the other parameters
used in the bending case remain the same. Then the axial
displacement along the beam (should be called a bar now) is
calculated and compared with the analytical solution. The results
are shown in Fig. 6. With only 42 elements, the relative error in
the maximum x-displacement (total elongation of the bar) reaches
3.0%. The BEM results improve quickly, with the error reaching
0.10% for the largest BEM model with 1050 constant elements. The
convergence rate is found to be Oðh1:05Þ in this case. This additional
test confirms that the BEM with constant elements works fine for
non-bending type of problems.

4. Discussions

To find out the cause of the slow convergence of the BEM
solutions, we study the conditioning of the linear systems of
equations for the beam-bending and bar-in-tension cases. Using
the models with the aspect ratio L/H¼20, the condition numbers
of the BEM systems for the beam and bar cases are computed and
plotted in Fig. 7 when the number of elements increases from 42
to 12,600. The condition numbers are identical for the beam and
bar cases because the coefficient matrices are the same in the two
cases. As shown in Fig. 7, the condition numbers are in the order of
104–105. These values are relatively high, nevertheless are stable.
Using double precision in the code, good BEM results have been
obtained with the systems of equations having the condition
numbers in the order of 108 [11]. In this study, all the fast
multipole BEM solutions were obtained within 100 iterations
using the GMRES solver for a tolerance of 10�4, for beam models
with all the three aspect ratios. This indicates that the conditioning
of BEM systems of the equations does not cause the accuracy
problem. This is also indicated by the good results, as shown in
Fig. 6, when the bar case is considered (the same system of
equations is solved with a different right-hand side vector).

Therefore, conditioning of the BEM equations can be excluded
from the causes of the slow convergence in the beam case.

One may ask if the BEM system of equations becomes degen-
erated when the domain is thin, which may lead to the slow
convergence of the BEM results. This is not the case either since
the largest aspect ratio L/H¼20 is well below the definition of a
thin shape or thin domain (for which, the aspect ratio should be
above 100). Even when the aspect ratio is above 100, it is shown in
Ref. [12] that the BIE does not degenerate for interior problems,
contrary to the case of a crack-like problem [13]. When the
thickness of the domain is finite, the BIE gives two distinct
equations at the two opposing collocation points, one on the top
surface and one on the bottom surface of the thin domain.
Therefore, the BEM is in general adequate for solving thin shape
or beam/shell-like structures, if the nearly singular integrals are
computed accurately [12,14].

The slow convergence of the BEM for beam bending problems
is most likely due to the characteristics of the constant elements,
not the conditioning or degeneracy of the BEM systems. Specifi-
cally, constant elements cannot describe adequately the bending
shape of a beam, due to the fact that constant elements cannot
represent the rigid-body rotation (which requires a linear term in
the displacement expression). This can cause errors in the bending
case when the rigid-body rotation and shear deformation dom-
inate on each element. In fact, when the beam is in bending, the
solution obtained by using constant elements gives zigzagged
(stepped) curves for the deformed top and bottom boundaries of
the beam (see Fig. 8). This leads to large errors in the calculation of
the displacement and strain fields, unless the size of elements is
extremely small as we have shown in this study. On the other side,
this situation is not so severe when the same beam is applied with
a tension load, where rigid-body translation dominates on each
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Fig. 5. The same beam with L/H¼20 and under a tension load (the case of a bar).
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Fig. 6. BEM results of the x-displacement of the bar under tension.
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Fig. 7. Condition numbers of the systems of equations for the beam and bar
models.
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Fig. 8. Deformed shape of the beam model under bending load (42 elements,
scaled).
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element and the constant element can represent this translation
correctly (see Fig. 9).

It should be pointed out that the slow convergence with
constant elements shown in this study does not exist when linear
or quadratic elements are used for the beam bending problems.
For example, there is a beam bending example solved in Ref. [3]
(Chapter 4, Example 4.4) which is almost identical to our case with
L/H¼5 (The only difference is that a distributed shear load is
applied at the end of the free end, while in our case a concentrated
load is applied.). With only 12 quadratic elements, the relative
error in the maximum deflection is less than 1% compared with
the analytical solution. In fact, it is also mentioned in Ref. [3] that
constant elements are not adequate for solving such beam bending
problems, without giving further explanations.

5. Conclusion

Slow convergence of the collocation BEM with constant ele-
ments in solving beam bending problems is reported in this paper
based on the BEM results for three cantilever beam models with
different aspect ratios. Although the BEM results converge to the
analytical solutions, the convergence rates are found to be very
slow and are in the range of Oðh0:55Þ–Oðh0:63Þ. The main reason for
this slow convergence is due to the behavior of the constant
elements which cannot represent the rigid-body rotation of
the displacement field correctly. Further theoretical studies are

needed to prove the convergence of the collocation BEM with
constant elements.
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