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a b s t r a c t

A fast multipole boundary element method (BEM) for solving large-scale thin plate bending problems is
presented in this paper. The method is based on the Kirchhoff thin plate bending theory and the
biharmonic equation governing the deflection of the plate. First, the direct boundary integral equations
and the conventional BEM for thin plate bending problems are reviewed. Second, the complex notation
of the kernel functions, expansions and translations in the fast multipole BEM are presented. Finally,
a few numerical examples are presented to show the accuracy and efficiency of the fast multipole BEM in
solving thin plate bending problems. The bending rigidity of a perforated plate is evaluated using the
developed code. It is shown that the fast multipole BEM can be applied to solve plate bending problems
with good accuracy. Possible improvements in the efficiency of the method are discussed.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary element method (BEM) has been applied suc-
cessfully to solve the thin plate bending problem since the late
of 1970s and early 1980s. Many researchers derived the direct
boundary integral equation (BIE) formulations for both linear and
nonlinear responses [1–11]. Using the Rayleigh-Green identity and
the fundamental solution, the biharmonic governing equation of
Kirchhoff thin plate theory can be transformed into a direct BIE
formulation where there are four boundary variables, that is, the
deflection, rotation, bending moment, and Kirchhoff equivalent
shear force. Generally, two of them are given from the boundary
conditions (BCs) and the other two are to be determined. There-
fore, two BIEs are required for the thin plate bending problem: the
displacement (deflection) BIE and the rotation (normal derivative)
BIE. The first BIE is strongly singular, while the second is hyper-
singular. All these characteristics resemble those of the BIE
formulations for potential, elasticity, Stokes flow, acoustic and
elastodynamic problems, except for the fact that the use of the
hypersingular BIE together with the singular BIE is a must for the
plate bending problem using the BEM.

For the conventional BEM, a standard linear system of equa-
tions is formed after the BCs are applied. As the coefficient matrix
A are usually dense and nonsymmetric, every element of A need
to be stored. Obviously, the construction of A requires O(N2)
operations and computer storage (with N being the number of
ll rights reserved.
equations). If direct solvers are used, such as Gauss elimination,
a total of O(N3) operations are required in the solution of the
systems. Even when iterative solvers, such as GMRES, are
employed, the computational complexity of the algorithm is still
O(N2). This is why the BEM is inefficient in solving large-scale
problems.

In the mid of 1980s, Greengard and Rokhlin [12–14] developed
the fast multipole method (FMM) to solve potential problems and
simulate particle dynamics that can achieve the efficiencies of O
(N) operations and computer storage. Many researchers have
applied the fast multipole BEM in many other fields, including
elasticity, Stokes flows, acoustics, elastodynamics, and electromag-
netics. Comprehensive reviews of the fast multipole BEM research
can be found in [15,16] and the details of the FMM implementa-
tion with the BEM can be found in [17,18]. Despite of the rapid
developments of the fast multipole BEM in solving various
problems in the last two decades, there are only a few papers on
solving the biharmonic equation with the fast multipole method.
Greengard, et al. solved 2-D biharmonic interaction problems [19]
and elasticity problems [20] based on the biharmonic equation.
They decomposed the biharmonic function into two analytic
functions (Goursat's formula) and used contour integrals for
evaluating these analytic functions in the complex plane. Gumerov
and Duraiswami solved the biharmonic equation in 3-D [21], in
which the biharmonic equation is decomposed into two harmonic
equations. If the above two approaches are to be used to solve the
plate bending problem, the four BCs for a plate in bending will be
difficult to be related to the two analytic or harmonic functions
in a general setting. According to the authors' best knowledge,
plate bending problems have not been attempted using the fast
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multipole method based on the direct BIE formulation in which
the BCs can be applied directly in a plate bending problem.

In this paper, we apply the fast multipole method to solve
large-scale thin plate bending problems that is based on the
biharmonic equation and the direct BIE formulation. First, we
briefly review the BIEs for Kirchhoff thin plate theory and the
related conventional BEM. Then, we introduce the fast multipole
algorithm and the complex notation of kernel functions, expan-
sions and translations of the kernels for thin plate bending
problems. Finally, a few numerical examples are given to show
the accuracy of the developed fast multipole BEM for thin plate
bending problems. Possible improvements to the efficiency of the
developed method are discussed to conclude the paper.
2. BEM formulation for thin plate bending problems

For completeness, we briefly review the governing equations
and the BIE formulations for the Kirchhoff thin plate bending
problem.
2.1. BIEs for the thin plate bending problem

The governing equations and the direct BIE formulations for
general thin plate bending problems are well documented in the
BEM literature [1–11].

Consider an elastic thin plate with its middle surface occupying
a 2-D domain V with boundary S (Fig. 1). In terms of deflection
wðxÞ, the biharmonic governing equation is:

D∇4wðxÞ ¼ qðxÞ; x∈V ð1Þ

where D¼ Eh3=12ð1−ν2Þ is the bending rigidity, E is Young's
modulus, ν is Poisson's ratio, h is the thickness, and q is the lateral
distributed load. The bending and twisting moments Mij are
related to the deflection w by the following relationship:

Mij ¼−D½νw;kkδij þ ð1−νÞw;ij� ð2Þ

where ð Þ;i ¼ ∂ð Þ=∂xi and summation over repeated index is
assumed. Index notation is used in this paper for convenience
and summation is assumed only for indices i, j and k in the range
of 1–2. On boundary S, the bending and twisting moments are
given by:

Mn ¼Mijninj ¼ −D ν∇2wþ ð1−νÞw;nn
� �

Mnt ¼Mijnitj ¼ −Dð1−νÞw;nt

)
ð3Þ

where ni and ti are the direction cosines of the outward normal n
and tangential direction t of boundary S, respectively (Fig. 1).
The shear force Qn and Kirchhoff equivalent shear force Kn are
2
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Fig. 1. A domain V with boundary S.
given by:

Qn ¼Mij;jni ¼−Dð∇2wÞ;n
Kn ¼ Qn þMns;s ¼ −Dð∇2wÞ;n þMns;s

)
ð4Þ

After applying the given boundary conditions, the deflection w
of the plate is solved from the governing Eq. (1). Once w is known,
the bending and twisting moments and shear forces can be
determined by Eqs. (2)–(4).

Governing Eq. (1) can be transformed into a set of integral
equations using the fundamental solution wnðx; yÞ which is avail-
able for thin plate bending problems and satisfies the following
equation:

D∇4wnðx; yÞ ¼ δðx; yÞ; x; y∈R2 ð5Þ
where ∇4ð Þ ¼ ð Þ;iijj is taken at field point y, δðx; yÞ is the Dirac
δ-function representing a concentrated unit force acting at source
point x in the lateral direction, and R2 is the full 2-D space.
The expression of the fundamental solution wnðx; yÞ is given as
[1, 5–8]:

wnðx; yÞ ¼ 1
8π

r2log r ð6Þ

where r¼
���y−x���, and x and y are any two points in the 2-D space.

The fundamental solution wn represents the deflection of an
infinitely large plate at y due to the unit force applied at x.

Substituting (6) into (2)–(4), we obtain the corresponding
kernel functions for the rotation (or normal slope), bending
moment and Kirchhoff equivalent shear force as follows:

θnðx; yÞ ¼ ∂wn

∂n
¼ 1

8π
1þ 2log rð Þrcos β ð7Þ

Mn

nðx; yÞ ¼ −
D
8π

2ð1þ νÞð1þ log rÞ þ ð1−νÞcos 2β� � ð8Þ

Kn

nðx; yÞ ¼−
D
4πr

2þ ð1−νÞcos 2β½ �cos β þ 1−ν
4πρ

Dcos 2β ð9Þ

where cos β¼ r;kðyÞnkðyÞ, with β being the angle between direction
r and n (Fig. 1), and 1=ρ is the curvature of the boundary curve S at
point y.

Stern [1] derived the complete forms of the direct BIEs based on
the Kirchhoff thin plate theory. These BIEs for a plate with a
smooth boundary are:Z
S
½wnKn−Kn

nw þMn

nθ−θ
nMn�dSðyÞ þ

Z
V
wnqdVðyÞ

¼
wðxÞ; x∈V ;

1
2
wðxÞ; x∈S smoothð Þ;
0; x∉V∪S

8>><
>>: ð10Þ

andZ
S
wn;ξKn−Kn

n;ξwþMn

n;ξθ−θ
n;ξMn

� �
dSðyÞ þ

Z
V
wn;ξqdVðyÞ

¼

w;ξðxÞ; x∈V ;
1
2
w;ξðxÞ; x∈S ðsmoothÞ;
0; x∉V∪S

8>>><
>>>:

ð11Þ

in which θ¼ θðyÞ ¼ ∂w=∂n; Mn ¼MnðyÞ; and Kn ¼ KnðyÞ are the
rotation, bending moment, and Kirchhoff equivalent shear force,
respectively, ξ is a direction vector associated with the source
point x (Fig. 1). On boundary S, we have ξ¼ nðxÞ and w;ξðxÞ ¼ θðxÞ.
In this work, we ignore the jump terms at the corners if they exist,
since the constant elements will be used in the discretization
where all the collocation points are away from the corners. In
practice, all plates with corners can be considered being rounded
off with little effects on the solutions.
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When x∈S, we can employ (10) and (11) to solve the unknown
boundary variables under given BCs. We usually call (10) with x∈S
as conventional BIE (CBIE) or regular/ordinary BIE, and (11) as
hypersingular BIE (HBIE). Once all the boundary variables are
known, (10) and (11) with x∈V (also called representation inte-
grals) can be applied to evaluate the deflection and its derivatives
inside the plate.

2.2. Treatment of domain integrals

The domain integral is not easy to be evaluated efficiently if the
external load q is complicated. The easiest way is to discretize the
domain directly and use numerical integration such as Gauss
quadrature to carry out the integration. However, it is too
expensive for most cases and sometimes is difficult to implement
especially for the perforated plate cases. Aliabadi discussed some
methods to deal with domain integrals in [11]. Gao [22] developed
a new method for converting domain integrals to boundary
integrals. Dual reciprocity method is another efficient method
which uses some radial based functions to represent the body
force and convert domain integrals to boundary integrals [23].
In this work, we are interested in the behaviors of thin plates
under concentrated load and uniformly distributed load so that q
is a constant at most and the domain integral can be converted to
the boundary integral which is much easier to evaluate. For
uniform distributed load q, the formulas for converting boundary
integrals are:

R
Vqw

ndVðyÞ ¼ q
R
S
~wn dSðyÞ

Z
V
qwn

;ξdVðyÞ ¼ q
Z
S
~wn

;ξdSðyÞ ð12Þ

where

~wnðx; yÞ ¼ 1
8π

r3

16
ð4log r−1Þcos β

~wn

;ξðx;yÞ ¼−
1
8π

ðr,⋅n,Þðr,⋅ξ,Þlog r−
r2

4
ð2log r−1Þðn,⋅ξ,Þ

� �
ð13Þ

If qðyÞ ¼ Pδ ~x ; yð Þ where P is a concentrated load, the domain
integral can be simplified as:Z
V
qwndV yð Þ ¼ Pwn x; ~xð Þ

with ~x being the point where P is applied. Once this conversion is
done, Eqs. (10) and (11) involve only boundary variables. There-
fore, only the boundary need to be discretized in order to find the
solution of the unknown variables on the boundary.
3. Fast multipole formulations

The main idea of the FMM is to implement the matrix-vector
multiplication without forming the entire matrix explicitly and to
use an iterative solver to obtain the solution. In the FMM, all
elements are usually divided into two parts: the elements close to
the source point and the elements far away from the source point.
The interactions between the first part of elements and source
points are still evaluated by direct integration as in the conven-
tional BEM. For the second part of elements, fast multipole
expansions will be used. In this section, the complex notation of
the kernel functions, expansions and translations in the FMM are
derived for the BIEs for the thin plate bending problem.

3.1. Complex Representations of the Kernels

We utilize some formulations of the fast multipole method for
2-D potential problems to derive the complex notation of kernel
functions for thin plate bending problems. In 2-D potential
problems [18], the complex notation of kernel functions is usually
used such that it is easier to find the related expansions and
translations.

Define the complex number z0 and z as: z0 ¼ x1 þ ix2 and
z¼ y1 þ iy2 where x1 and x2 are the ordinates of x, and y1 and y2
are the ordinates of y. The complex notation for kernel wnðx; yÞ is
found to be:

wnðz0; zÞ ¼ −
1
4
ðz0−zÞðz0−zÞGðz0; zÞ ð14Þ

where the over bar indicates complex conjugate and G is the
Green's function (in complex form) for 2-D potential problems
which is given by [18]:

Gðz0; zÞ ¼−
1
2π

logðz0−zÞ

In the following, z and z are considered as two independent
variables and ð Þ′¼ ∂ð Þ=∂z0.

It is not straightforward to derive the complex forms of kernels
directly. To facilitate the derivations, the following auxiliary
expressions are derived firstly (see Appendix):

cos β
r

¼ r
,
⋅n
,

r2
¼ Re

nðzÞ
z−z0

� �
¼ Re 2πnðzÞG′ðz0; zÞ

n o

cosβ0
r

¼−
r
,
⋅ξ
,

r2
¼−Re

ξðz0Þ
z−z0

� �
¼−Re 2πξðz0ÞG′ðz0; zÞ

n o

cosφ0 ¼ n
,
⋅ξ
,¼ Re nðzÞ⋅ξðz0Þ

	 

ð2cos βcosβ0 þ cosφ0Þ

r2
¼ −Re

nðzÞξðz0Þ
z−z0ð Þ2

( )

¼−Re 2πξðz0Þn zð ÞG″ z0; zð Þ
n o

cos 2β¼ Re
z−z0
z−z0

n2ðzÞ
� �

¼ Re 2πðz−z0Þn2ðzÞG′ðz0; zÞ
n o

ð15Þ

where nðzÞ is the unit outward normal vector at point z and
nðzÞ ¼ n1 þ in2, and β0 is the angle between directions r! and ξ

!
(Fig. 1).

Substituting them into the real forms of the kernel functions,
the corresponding complex forms of kernel functions are obtained
immediately. The complex forms of the other three kernel func-
tions for the CBIE are:

θnðz0; zÞ ¼ ðz−z0Þ −
1
4
ðGðz0; zÞ þ Gðz0; zÞÞ þ

1
8π

� �
nðzÞ ð16Þ

Mn

nðz0; zÞ ¼−D
ð1−vÞ
4

ðz−z0ÞG′ðz0; zÞn2ðzÞ
�

þ −
1
4

Gðz0; zÞ þ Gðz0; zÞ
� �

þ 1
4π

� �
ð1þ vÞ

�
ð17Þ

Kn

nðz0; zÞ ¼−
D
2

1
2
ð1−vÞððz−z0ÞG″ðz0; zÞn3ðzÞ þ nðzÞG′ðz0; zÞÞ

�

þ2G′ðz0; zÞnðzÞ−
1−v
ρ

ðz−z0ÞG′ðz0; zÞn2ðzÞ
�

ð18Þ

The complex representations of the kernel functions for the
HBIE are:

wn

;ξðz0; zÞ ¼ −ðz−z0Þ −
1
4
ðGðz0; zÞ þ Gðz0; zÞÞ þ

1
8π

� �
ξðz0Þ ð19Þ

θn;ξðz0; zÞ ¼ −
1
4
G′ðz0; zÞðz−z0ÞnðzÞξðz0Þ

− −
1
4
ðGðz0; zÞ þ Gðz0; zÞÞ þ

1
4π

� �
nðzÞξðz0Þ ð20Þ

Mn

n;ξðz0; zÞ ¼
Dð1−vÞ

4
ððz0−zÞG″ðz0; zÞn2ðzÞξðz0Þ þ n2ðzÞξðz0ÞG′Þ
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þDð1þ vÞ
2

G′ðz0; zÞξðz0Þ ð21Þ

Kn

n;ξ z0; zð Þ ¼ D
4

1−vð Þ − z−z0ð Þn3 zð Þξ z0ð ÞG‴ z0; zð Þ−n zð Þξ z0ð ÞG″ z0; zð Þ
��

þn3 zð Þξ z0ð ÞG″ z0; zð Þ
−4n zð Þξ z0ð ÞG″ z0; zð Þ
�

þD 1−vð Þ
2ρ

⋅ z−z0ð Þn2 zð Þξ z0ð ÞG″ z0; zð Þ−n2 zð Þξ z0ð ÞG′ z0; zð Þ
� �

ð22Þ

where ξ z0ð Þ is the unit normal vector at point z0 and ξðz0Þ ¼
ξ1 þ iξ2.

Substituting (15) into (13), we obtain the complex representa-
tions for ~wn and ~wn

;ξ:

~wnðz0; zÞ ¼ −
1
32

ðz0−zÞðz0−zÞððz0−zÞnðzÞ

þðz0−zÞnðzÞÞ Gðz0; zÞ þ
1
8π

� �

~wn

;ξðz0; zÞ ¼
1
16

ðz−z0Þ2ξðz0ÞnðzÞðGðz0; zÞ

þGðz0; zÞÞ−
1

32π
ðz−z0Þðz−z0 Þξðz0ÞnðzÞ ð23Þ

If q represents a concentrated load, it is not necessary to use the
FMM because the order of operations in evaluating the domain
integrals is already O(N).

3.2. Multipole expansions and moment to moment translations

Let zc be a multipole expansion point close to z (Fig. 2) and
apply Taylor series expansion. The multipole expansion of Gðz0; zÞ
and its derivatives are [18]:

Gðz0; zÞ ¼ −
1
2π

logðz0−zÞ ¼
1
2π

∑
∞

k ¼ 0
Okðz0−zcÞIkðz−zcÞ

∂ lð ÞGðz0; zÞ
∂z0 lð Þ ¼ ð−1Þl 1

2π
∑
∞

k ¼ 0
Okþlðz0−zcÞIkðz−zcÞ for l¼ 1;2; :::;

ð24Þ
where the two auxiliary functions are defined as [18]:

IkðzÞ ¼ zk
k! for k≥0

O0ðzÞ ¼ −logðzÞ and OkðzÞ ¼
ðk−1Þ!
zk

for k≥1

Substituting (24) into (19)–(22) directly gives us the multipole
expansion of the CBIE:Z
S
½wnðz0; zÞKn−Kn

nðz0; zÞwþMn

nðz0; zÞθ−θnðz0; zÞMn�dSðzÞ

¼ 1
8π

∑
∞

k ¼ 0
Okðz0−zcÞNkðzcÞ þ z0 ∑

∞

k ¼ 0
Okðz0−zcÞ ~NkðzcÞ

"

ig. 2. Complex notation and the related points for fast multipole expansions.
−
���z0���2 ∑

∞

k ¼ 0
Okðz0−zcÞPkðzcÞ þ ∑

∞

k ¼ 0
Okðz0−zcÞRkðzcÞ

þz0 ∑
∞

k ¼ 0
Okðz0−zcÞ ~RkðzcÞ þ S1 þ z0S2

#
ð25Þ

where

NkðzcÞ ¼
Z
S
Ikðz−zcÞðznðzÞMn−

���z���2KnÞdSðzÞ; for k≥0 ð26Þ

~NkðzcÞ ¼
Z
S
Ikðz−zcÞðzKn−nðzÞMnÞdSðzÞ; for k≥0 ð27Þ

PkðzcÞ ¼
Z
S
Ikðz−zcÞKndSðzÞ; for k≥0 ð28Þ

R0ðzcÞ ¼
Z
S
ðznðzÞMnðzÞ þ 2Dð1þ vÞθðzÞÞdSðzÞ

R1ðzcÞ ¼
Z
S
ðz−zcÞðznðzÞMnðzÞ þ 2D 1þ vð ÞθðzÞÞdSðzÞ

þ
Z
S

Dð1−vÞzn2ðzÞ θðzÞ þ 2
ρ
wðzÞ

� �
−ð5−vÞDnðzÞw

� �
dSðzÞ

RkðzcÞ ¼
Z
S
Ikðz−zcÞðznðzÞMnðzÞ þ 2D 1þ vð ÞθðzÞÞdSðzÞ

þ
Z
S
Ik−1ðz−zcÞ Dð1−vÞzn2ðzÞ θðzÞ þ 2

ρ
wðzÞ

� �
−ð5−vÞDnðzÞw

� �
dSðzÞ

þ
Z
S
Ik−2ðz−zcÞDð1−vÞzn3ðzÞwðzÞdSðzÞ; for k≥2 ð29Þ

~R0ðzcÞ ¼
Z
S
ðzKnðzÞ−nðzÞMnðzÞÞdSðzÞ

~R1ðzcÞ ¼
Z
S
ðz−zcÞðzKnðzÞ−nðzÞMnðzÞÞdSðzÞ

−
Z
S
n2ðzÞDð1−vÞ 2

ρ
wðzÞ þ θðzÞ

� �
dSðzÞ

~RkðzcÞ ¼
Z
S
Ikðz−zcÞðzKnðzÞ−nðzÞMnðzÞÞdSðzÞ

−
Z
S
Ik−1ðz−zcÞn2ðzÞDð1−vÞ 2

ρ
wðzÞ þ θðzÞ

� �
dSðzÞ

−
Z
S
Ik−2ðz−zcÞn3ðzÞDð1−vÞwðzÞdSðzÞ; for k≥2 ð30Þ

and the two remaining terms:

S1 ¼ −2Dð1þ vÞ
Z
S
θðzÞdSðzÞ−

Z
S
znðzÞMnðzÞdSðzÞ ð ¼−R0Þ

S2 ¼
Z
S
nðzÞMnðzÞdSðzÞ ð31Þ

Results in (26)–(30) are the moments about zc for the integrals
in the CBIE. Likewise, the multipole expansion for the HBIE is:Z
S
½wn;ξðz0; zÞKn−Kn

n;ξðz0; zÞwþMn

n;ξðz0; zÞθ−θn;ξðz0; zÞMn�dSðzÞ

¼ 1
8π

ξðz0Þ ∑
∞

k ¼ 0
Okðz0−zcÞ ~NkðzcÞ−z0 ∑

∞

k ¼ 0
Okðz0−zcÞPkðzcÞ

"

−z0 ∑
∞

k ¼ 0
Okðz0−zcÞPkðzcÞ

− ∑
∞

k ¼ 0
Okþ1ðz0−zcÞRkðzcÞ þ ∑

∞

k ¼ 0
Okðz0−zcÞ ~RkðzcÞ

þ ∑
∞

k ¼ 0
Okþ1ðz0−zcÞTkðzcÞ þ S3 þ z0S4

#
ð32Þ

where the moments ~Nk zcð Þ, Pk zcð Þ, Rk zcð Þ and ~Rk zcð Þ are the same as
given in Eqs. (27)–(30), respectively. The new moment Tk zcð Þ is
given by:

T0ðzcÞ ¼
Z
S
nðzÞMnðzÞdSðzÞ ð ¼ S2Þ
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T1ðzcÞ ¼
Z
S
ðz−zcÞnðzÞMnðzÞdSðzÞ

þ
Z
S
n2ðzÞDð1−vÞ 2

ρ
wðzÞ þ θðzÞ

� �
dSðzÞ

TkðzcÞ ¼
Z
S
Ikðz−zcÞnðzÞMnðzÞdSðzÞ

þ
Z
S
Ik−1ðz−zcÞn2ðzÞDð1−vÞ 2

ρ
wðzÞ þ θðzÞ

� �
dSðzÞ

þ
Z
S
Ik−2ðz−zcÞn3ðzÞDð1−vÞwðzÞdSðzÞ; for k≥2 ð33Þ

and the two remaining terms are:

S3 ¼ 2
Z
S
nðzÞMndSðzÞ−

Z
S
zKndSðzÞ

S4 ¼
Z
S
KndSðzÞ ð ¼ P0Þ ð34Þ

If the multipole expansion point zc is moved to a new location
zc′ (see Fig. 2), we have the following moment to moment (M2M)
translations:

Nkðzc′Þ ¼ ∑
k

l ¼ 0
Ik−lðzc−zc′ÞNkðzcÞ

~Nkðzc′Þ ¼ ∑
k

l ¼ 0
Ik−lðzc−zc′Þ ~NkðzcÞ

Pkðzc′Þ ¼ ∑
k

l ¼ 0
Ik−lðzc−zc′ÞPkðzcÞ

Rkðzc′Þ ¼ ∑
k

l ¼ 0
Ik−lðzc−zc′ÞRkðzcÞ

~Rkðzc′Þ ¼ ∑
k

l ¼ 0
Ik−lðzc−zc′Þ ~RkðzcÞ

Tkðzc′Þ ¼ ∑
k

l ¼ 0
Ik−lðzc−zc′ÞTkðzcÞ ð35Þ

All the M2M translations are exactly the same as used in the 2-
D potential case [18].

3.3. Local expansions and translations

Let zL be a local expansion point close to the source point z0
(Fig. 2). By using Taylor series expansion, we have the following
local expansions for the CBIE:Z
S
½wnðz0; zÞKn−Kn

nðz0; zÞwþMn

nðz0; zÞθ−θnðz0; zÞMn�dSðzÞ

¼ 1
8π

∑
∞

l ¼ 0
LlðzLÞ Ilðz0−zLÞ þ z0 ∑

∞

l ¼ 0

~LlðzLÞIlðz0−zLÞ þ ∑
∞

l ¼ 0
UlðzLÞIlðz0−zLÞ

"

þz0 ∑
∞

l ¼ 0

~UlðzlÞIlðz0−zLÞ−
���z0���2 ∑

∞

l ¼ 0
VlðzlÞIlðz0−zLÞ þ S1 þ z0S2

#
ð36Þ

and for the HBIE:Z
S
½wn;ξðz0; zÞKn−Kn

n;ξðz0; zÞw þMn

n;ξðz0; zÞθ−θn;ξðz0; zÞMn�dSðzÞ

¼ 1
8π

ξðz0Þ ∑
∞

l ¼ 1
LlðzLÞIl−1ðz0−zLÞ þ ∑

∞

l ¼ 0

~LlðzLÞIlðz0−zLÞ
"

þ ∑
∞

l ¼ 0

~UlðzLÞIlðz0−zLÞ−z0 ∑
∞

l ¼ 0
VlðzLÞIlðz0−zLÞ−z0 ∑

∞

l ¼ 0
VlðzLÞIlðz0−zLÞ

− ∑
∞

l ¼ 1
WlðzLÞIl−1ðz0−zLÞ þ S3 þ z0S4

#
ð37Þ

where the expansion coefficients are given by the following
moment to local (M2L) translation:

LlðzLÞ ¼ ð−1Þl ∑
∞

k ¼ 0
OkþlðzL−zcÞRkðzcÞ
~LlðzLÞ ¼ ð−1Þl ∑
∞

k ¼ 0
OkþlðzL−zcÞ ~RkðzcÞ

UlðzLÞ ¼ ð−1Þl ∑
∞

k ¼ 0
OkþlðzL−zcÞNkðzcÞ

~UlðzLÞ ¼ ð−1Þl ∑
∞

k ¼ 0
OkþlðzL−zcÞ ~NkðzcÞ

VlðzLÞ ¼ ð−1Þl ∑
∞

k ¼ 0
OkþlðzL−zcÞPkðzcÞ

WlðzLÞ ¼ ð−1Þl ∑
∞

k ¼ 0
OkþlðzL−zcÞTkðzcÞ ð38Þ

for l≥0.
If the local expansion point is moved from zL to zL′ (Fig. 2), the

new local expansion coefficients are given by the following local to
local (L2L) translations:

LlðzL′Þ ¼ ∑
∞

m ¼ l
Im−lðzL′−zLÞLmðzLÞ

~LlðzL′Þ ¼ ∑
∞

m ¼ l
Im−lðzL′−zLÞ ~LmðzLÞ

UlðzL′Þ ¼ ∑
∞

m ¼ l
Im−lðzL′−zLÞUmðzLÞ

~UlðzL′Þ ¼ ∑
∞

m ¼ l
Im−lðzL′−zLÞ ~UmðzLÞ

VlðzL′Þ ¼ ∑
∞

m ¼ l
Im−lðzL′−zLÞVmðzLÞ

WlðzL′Þ ¼ ∑
∞

m ¼ l
Im−lðzL′−zLÞWmðzLÞ ð39Þ

for l≥0. Note that all the translation coefficients (M2M, M2L and
L2L) are the same as for the 2-D potential case [18]. Therefore, no
extra effort is needed in implementation of these translations
based on the 2-D potential code [18].

3.4. Expansions and translations of the domain related integrals

The expansions and translations of the domain related integrals
are derived for uniform distributed load q. For the first integral in
(12) for the CBIE, the multipole expansion is:

q
Z
S
~wnðz0; zÞdSðyÞ

¼−
q

64π
∑
∞

k ¼ 0
Okðz0−zcÞR1

k ðzcÞ−z0 ∑
∞

k ¼ 0
Okðz0−zcÞR2

k ðzcÞ
"

þ
���z0���2 ∑

∞

k ¼ 0
Okðz0−zcÞR3

k ðzcÞ þ z20 ∑
∞

k ¼ 0
Okðz0−zcÞR4

k ðzcÞ

−z0
���z0���2 ∑

∞

k ¼ 0
Okðz0−zcÞR5

k ðzcÞ−z0 ∑
∞

k ¼ 0
Okðz0−zcÞR8

k ðzcÞ

þz20 ∑
∞

k ¼ 0
Okðz0−zcÞR9

k ðzcÞ−z0
���z0���2 ∑

∞

k ¼ 0
Okðz0−zcÞR10

k ðzcÞ
#

−
q

128π
ðS5 þ z0S6 þþ

���z0���2S7 þ z20S8 þ z0
���z0���2S9Þ ð40Þ

and for the second integral in (12) for the HBIE, the multipole
expansion is:

q
Z
S
~wn

;ξdSðyÞ

¼ q
32π

ξðz0Þ z20 ∑
∞

k ¼ 0
Okðz0−zcÞR5

k ðzcÞ þ ∑
∞

k ¼ 0
Okðz0−zcÞR6

k ðzcÞ
"

−z0 ∑
∞

k ¼ 0
Okðz0−zcÞR7

k ðzcÞ þ z20 ∑
∞

k ¼ 0
Okðz0−zcÞR10

k ðzcÞ

þ ∑
∞

k ¼ 0
Okðz0−zcÞR11

k ðzcÞ
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−z0 ∑
∞

k ¼ 0
Okðz0−zcÞR12

k ðzcÞ
#
−

q
32π

ξðzcÞðS10 þ z0S11−z0S8−
���z0���2S9 Þ

ð41Þ
where

R1
k ðzcÞ ¼

Z
S
Ikðz−zcÞ

���z���2ðznðzÞ þ znðzÞÞdS zð Þ

R2
k ðzcÞ ¼

Z
S
Ikðz−zcÞð2

���z���2nðzÞ þ z2nðzÞÞdS zð Þ

R3
k zcð Þ ¼

Z
S
Ikðz−zcÞð2znðzÞ þ 2znðzÞÞdS zð Þ

R4
k ðzcÞ ¼

Z
S
Ikðz−zcÞznðzÞdSðzÞ

R5
k ðzcÞ ¼

Z
S
Ikðz−zcÞnðzÞdSðzÞ

R6
k ðzcÞ ¼

Z
S
Ikðz−zcÞz2nðzÞdS zð Þ

R7
k ðzcÞ ¼ 2

Z
S
Ikðz−zcÞznðzÞdSðzÞ

R8
k ðzcÞ ¼

Z
S
Ikðz−zcÞ½2

���z���2nðzÞ þ z2nðzÞ�dSðzÞ

R9
k ðzcÞ ¼

Z
S
Ikðz−zcÞznðzÞdSðzÞ

R10
k ðzcÞ ¼

Z
S
Ikðz−zcÞnðzÞdSðzÞ

R11
k ðzcÞ ¼

Z
S
Ikðz−zcÞz2nðzÞdSðzÞ

R12
k ðzcÞ ¼ 2

Z
S
Ikðz−zcÞznðzÞdSðzÞ ð42Þ

and

S5 ¼
Z
S
z
���z���2nðzÞdSðzÞ; S6 ¼−

Z
S

2
���z���2nðzÞ þ z2nðzÞ

� �
dSðzÞ;

S7 ¼ 2
Z
S
znðzÞdSðzÞ; S8 ¼

Z
S
znðzÞdSðzÞ;

S9 ¼−
Z
S
nðzÞdSðzÞ; S10 ¼

Z
S

���z���2nðzÞdSðzÞ;
S11 ¼ −

Z
S
znðzÞdSðzÞ ð43Þ

The subscript k in Eq. (42) means k-th moment and the
superscripts represent different moments. That is, we have 12
different moments in total for the two domain related integrals.
The M2M translations for above moments are operated similarly
as the ones in the previous section. The local expansions for two
Table 1
Maximum deflections of the plates under uniform distributed load and concentrated lo

Loading Type of Plate No. of elements F

Uniform distributed load q Square plate 40 0
80 0

160 0
Circle plate 128 0

252 0
504 0

Concentrated load P Square plate 40 0
80 0

160 0
Circle plate 128 0

252 0
504 0
domain related integrals in the CBIE and HBIE are:

q
Z
S
~wnðz0; zÞdSðyÞ

¼−
q

64π
∑
∞

l ¼ 0
L1l ðzLÞIlðz0−zLÞ−z0 ∑

∞

l ¼ 0
L2l ðzLÞIlðz0−zLÞ

"

þ
���z0���2 ∑

∞

l ¼ 0
L3l ðzLÞIlðz0−zLÞ þ z20 ∑

∞

l ¼ 0
L4l ðzLÞIlðz0−zLÞ

−z0
���z0���2 ∑

∞

l ¼ 0
L5l ðzLÞIlðz0−zLÞ−z0 ∑

∞

l ¼ 0
L8l ðzLÞIlðz0−zLÞ

þz20 ∑
∞

l ¼ 0
L9l ðzLÞIlðz0−zLÞ−z0

���z0���2 ∑
∞

l ¼ 0
L10l ðzLÞIlðz0−zLÞ

#

−
q

128π
ðS5 þ z0S6 þþ

���z0���2S7 þ z20S8 þ z0
���z0���2S9Þ ð44Þ

and

q
Z
S
~wn

;ξdSðyÞ

¼ q
32π

ξðz0Þ z20 ∑
∞

l ¼ 0
L5l ðzLÞIlðz0−zLÞ þ ∑

∞

l ¼ 0
L6l ðzLÞIl z0−zLð Þ

"

−z0 ∑
∞

l ¼ 0
L7l ðzLÞIlðz0−zLÞ þ z20 ∑

∞

l ¼ 0
L10l ðzLÞIlðz0−zLÞ

þ ∑
∞

l ¼ 0
L11l ðzLÞIlðz0−zLÞ−z0 ∑

∞

l ¼ 0
L12l ðzLÞIlðz0−zLÞ

#

−
q

32π
ξðz0ÞðS10 þ z0S11−z0S8−

���z0���2S9 Þ ð45Þ

The coefficients are given by the M2L translations which are
the same as the ones in the previous section:

LilðzLÞ ¼ ð−1Þl ∑
∞

k ¼ 0
OkþlðzL−zcÞRi

kðzcÞ ; for i¼ 1;2;⋯;7; ð46Þ

LilðzLÞ ¼ ð−1Þl ∑
∞

k ¼ 0
OkþlðzL−zcÞRi

kðzcÞ; for i¼ 8;9;⋯;12 ð47Þ

The L2L translations for these local expansion coefficients are
also similar to the ones in the previous section:

LilðzL′Þ ¼ ∑
∞

m ¼ l
Im−lðzL′−zLÞLimðzLÞ; for i¼ 1;2;⋯;7; ð48Þ

LilðzL′Þ ¼ ∑
∞

m ¼ l
Im−lðzL′−zLÞLimðzLÞ; for i¼ 8;9;⋯;12 ð49Þ
ad.

ast multipole BEM α Conventional BEM α Exact solution [25]
(αPa2/D or αqa4/D) α

.004064 0.004064 0.004062

.004062 0.004061

.004061 0.004062

.0632 0.0632 0.0637

.0635 0.0635

.0636 0.0636

.01160 0.01160 0.01160

.01160 0.01160

.01160 0.01160

.0502 0.0502 0.0505

.0504 0.0503

.0504 0.0504
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Fig. 3. A circular plate with a center hole.
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Fig. 4. Computed maximum deflection for the circular plate with a center hole.
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Fig. 5. A circular plate with an off-center hole.
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4. Numerical examples

Several benchmark plate bending problems are studied first to
show the accuracy and efficiency of the developed fast multipole
BEM for solving thin plate bending problems. Then more compli-
cated cases of perforated plate models with about 500,000
DOFs are solved. In all the numerical examples, Young's modulus
E¼70 GPa, Poisson's ratio v¼ 0:3, thickness of the plate h¼ 0:05m,
the uniformly distributed load q¼ 0:1MPa, and the concentrated
load P ¼ 10KN. Constant line elements are used in the BEM, where
all the singular and hypersingular integrals are calculated analy-
tically based on the definitions of the CPV and HFP integrals,
respectively (see, e.g., Ref. [18]).

For the fast multipole BEM, the numbers of terms for both
multipole and local expansions are set to 15, and the maximum
number of elements in a leaf are set to 20. Other numbers of
expansion terms equal to 5 and 10 are also tested, and it is found
that results with 5 expansion terms are not accurate, while results
with 10 expansion terms are within 1% of those with 15 terms.
GMRES [24] iterative solver is used to solve all the linear equations
and the tolerance for convergence is set to 10−8. A block diagonal
preconditioner is used with the GMRES solver. For the conven-
tional BEM, the LAPACK package is applied to solve the linear
system. All the examples are run on a desktop PC with an Intel
Core Duo 2 CPU and 8 GB RAM.

4.1. Square and circular plate models

Two cases are presented to verify the fast multipole BEM first.
Simply supported square and circular plates without holes under
uniformly distributed load and concentrated load applied at the
center are given. The exact solutions of maximum deflection wmax

are given in [25] in terms of non-dimensional coefficients α and β.
For the concentrated load: wmax ¼ αPa2=D and for the uniform
distributed load: wmax ¼ αqa4=D where a is the length of edges of
the square plate or the radius of the circular plate.

From Table 1, we can see the maximum deflections solved by
the fast multipole BEM agree very well with the results of the
conventional BEM, and both the BEM results agree with the exact
solutions for all the cases.

4.2. Plates with one hole

Next, we present some examples of plates with one hole under
uniformly distributed load to show the capabilities of the devel-
oped fast multipole BEM in dealing with multi-connected domain
problems and its efficiencies in solutions.

The first example is a circular plate of radius R¼ 1 m with a
center hole of radius r¼ 0:25 m (Fig. 3). The outer boundary of the
plate is simply supported and the inner boundary (edge of the
hole) is free. Under the uniformly distributed load q, the maximum
deflection is on the edge of the hole. The fast multipole BEM
results are obtained with several meshes and compared with the
FEM (ANSYSs) solutions using 4-node shell elements. A compar-
ison of the convergence of the fast multipole BEM and FEM
solutions is shown in Fig. 4, and good agreement is observed.
Both the fast multipole BEM and FEM solutions converge as the
numbers of the elements are sufficiently large.

Next we consider a circular plate with an off-center hole as
shown in Fig. 5. The radius of the plate is R¼ 1 m, the radius of the
hole is r¼ 0:15 m, and the hole is centered at x¼ y¼ 0:4 m
location. Again the plate is simply supported on the outer
boundary and the edge of the hole is free. Fig. 6 shows the
computed values of the deflection on the edge of the hole using
the fast multipole BEM and compared with those using the FEM.
The horizontal axis is the angle (in radian) defined as in the right
upper corner of Fig. 5 where axis x' and y' are parallel to axis x and
y, respectively. A total of 3240 line elements are used in the
fast multipole BEM model and a total of 12610 shell elements are
used in the FEM model for this comparison. Very good agree-
ment between the fast multipole BEM results and FEM results is
achieved as shown in Fig. 6.

The above examples demonstrate the capability for fast multi-
pole BEM to solve multi-connected domain problems and indicate
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that the complex notation for all the kernels is correct. We now
solve the model in Fig. 3 again using both the conventional BEM
and fast multipole BEM to show the efficiency of fast multipole
BEM without using any pre-conditioner (only in this case).

Figs. 7 and 8 show the CPU time and computer memory used
by the conventional BEM and fast multipole BEM. Here the used
memory only includes the memory allocated by the program.
Clearly, the fast multipole BEM requires much less CPU time and
computer memory. As the number of degrees of freedom of the
model increases, the fast multipole BEM is even more efficient
compared with the conventional BEM, which enables the BEM to
be used in solving large-scale plate bending problems. In addition,
we can see that the data of the used CPU time and memory are
matched very well with the trend lines for both fast multipole
BEM and conventional BEM. As it is mentioned before, the
conventional BEM requires O(N2) operations (with iterative sol-
ver), while the fast multipole BEM can achieve O(N) efficiency.
Figs. 7 and 8 support this conclusion.
4.3. Perforated plate models

We apply the developed fast multipole BEM to solve some
perforated plate models. Here we use the BEM to analyze plates
with 4, 16, 36 and 64 holes under a concentrated load and evaluate
the effective bending rigidity of these perforated plate models.
The models of perforated plates are constructed in the follow-
ing way. We use a square plate with 4 holes as a basic pattern (see
the plot on the left-hand side of Fig. 9). The square plate has an
edge length of 1 m. The four holes have the same radius of 0.1 m
and are centered at x¼ y¼ 70:25 m. Then we directly add some
basic patterns together to construct the larger perforated plate
models. Only the boundaries of the new larger models are kept.
Any other boundaries of the basic patterns that are inside the
larger models are deleted. For example, to construct the model
with 16 holes, we just use 4 patterns and add them together as
shown on the right-hand side of Fig. 9.

In Table 1, the maximum deflection of simply supported plates
subjected to the concentrated load at the center is written as:

wmax ¼
αPa2

D
ð50Þ

where P represents the concentrated load, a is the length of the
edges of the plates, D is the bending rigidity and α is a non-
dimensional number. To calculate the effective bending rigidity of
the perforated plates, we use a similar formula:

w′
max ¼

αPa2

Def f
ð51Þ

where α and P are the same values as the cases of simply
supported plates without holes under a center concentrated load,
w′max is the maximum deflection of the perforated plate, and Def f

is the effective bending rigidity. Dividing (50) by (51), we have:

η¼ Def f

D
¼ wmax

w′max
ð52Þ



Table 2
Comparison of effective bending rigidity for a perforated plate.

No. of
holes

η

FMM
BEM

Conventional
BEM

FEM Analytical results from
[26]

4 0.83424 0.83426 0.83300 0.76
16 0.79357 – 0.78922
36 0.78785 – 0.77619
64 0.77442 – 0.77079

S. Huang, Y.J. Liu / Engineering Analysis with Boundary Elements 37 (2013) 967–976 975
The ratio η of the stiffness is associated with the maximum
deflections of the simple plate (without holes) and the perforated
plate. Eq. (52) is applied to estimate the effective bending rigidity
in this example.

Analytic predictions of the effective rigidity of the perforated
plates are available in the literature. Meijers first proposed the
analytic results of the effective elastic constants for perforated
plates in [26]. He derived formulas for predicting the infinite
perforated plates with square patterns and triangular patterns,
respectively, by using complex analysis. Later, O’Donnell [27]
conducted some experiments and suggested new formulas to pre-
dict the effective elastic constants. Lee and Kim [28], also pre-
sented a numerical way to estimate the effective elastic constants.
In this work, we compare our results with Meijers' analytical
results in [26].

In Table 2, we can see that as the number of the holes increase,
the ratio η calculated by fast multipole BEM converges to a stable
value which agrees well with the analytical solution [26]. Note
that Meijers' results are suitable for infinitely large perforated
plate models. So as the number of holes in our cases increases, the
effective bending rigidity should approach Meijers' result. Table 2
supports this conclusion. We also use the conventional BEM and
FEM to solve these problems. The conventional BEM can solve the
case of a perforated plate model with only four holes. For the cases
with more holes, the desktop PC used does not have enough
memory needed for the conventional BEM to run the job.

For the largest model with 64 holes, the BEM model has
492,000 unknowns (246,000 constant elements), while the FEM
model has 1,259,142 unknowns (204,800 Q4 elements). However,
the FEM model was solved in about 6 minutes (using ANSYS with
the sparse solver and on multi cores), while the BEM model was
solved in hours (on a single core) with the same PC. This is due to
the fact that a very small tolerance (10−8) for the GMRES solver
was used in the BEM solution, and the fast multipole BEM
implementation has not been optimized. Further improvements
in the fast multipole BEM formulation and code need to be made.



5. Conclusions

In this paper, a fast multipole BEM for thin plate bending
problems is presented for the first time. The complex notation
is used and the kernels are expressed in complex variables relating
to the kernels for the 2-D potential case, which facilitates
straightforward implementations for the multipole and local
expansions and related translations. However, the expressions
for those expansions are quite lengthy and consume much more
computing time than in the case of 2-D potential problems.
Further investigation on reducing the complexity of the expan-
sions need to be conducted so that the BEM can be applied to solve
practical and large models of perforated plates. With even larger
numbers of holes and random distributions of the holes in
perforated plate models, the BEM should have advantages over
the FEM in both meshing stages and solutions.
The Kirchhoff plate theory is not accurate to describe the
behaviors of thick plates under transverse loading. As future work,
the fast multipole BEM based on the Reissner–Mindlin theory for
solving thick plate bending problems can be developed. The BEM
can also be applied to analyze the bending problems of jointed
plates or plate assemblies in structures. Another potential area for
improvement is the application of other fast BEM approaches such
as the adaptive cross approximation method [29,30] for solving
plate bending problems, which is easier to implement and can
offer additional advantages to the BEM such as in parallel
computing.
Appendix

In the appendix, we derive the results in Eq. (15). First, we
introduce the following notation. Assume x and y are two points in
the 2-D space, and r¼

���y−x��� is the distance between x and y:

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1−x1Þ2 þ ðy2−x2Þ2

q
where x1,x2 , y1 and y2 are the coordinates of x and y, respectively.
For convenience, we use dx¼ y1−x1 and dy¼ y2−x2. Now r can be
rewritten as:

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxÞ2 þ ðdyÞ2

q
All the complex variables are defined in the same way as in

Section 3.
First Equation:
The real notation of first equation is:

cos β
r

¼ r
,
⋅n
,

r2
¼ dx⋅n1 þ dy⋅n2

r2
ð53Þ

Substitute the complex notations of n zð Þ, z and z0 into the right-
hand side of the first equation of (15):

nðzÞ
z−z0

¼ n1−in2

dx−idy
¼ ðn1−in2Þðdxþ idyÞ

ðdxÞ2 þ ðdyÞ2
¼ n1dxþ n2dyþ iðn1dy−n2dxÞ

ðdxÞ2 þ ðdyÞ2
ð54Þ

Compare (53) and (54), the first equation in (15) is proved.
Second Equation:
For the second equation of (15), we can use the similar

procedure.

cos β
r

¼−
r
,
⋅ξ
,

r2
¼−

dx⋅ξ1 þ dy⋅ξ2
r2

ξðz0Þ
z−z0

¼ ξ1−iξ2
dx−idy

¼ ðξ1−iξ2Þðdxþ idyÞ
ðdxÞ2 þ ðdyÞ2

¼ ξ1dxþ ξ2dyþ iðξ1dy−ξ2dxÞ
ðdxÞ2 þ ðdyÞ2

We can see

cosβ0
r

¼−
r
,
⋅ξ
,

r2
¼−Re

ξðz0Þ
z−z0

� �

Third Equation:
To prove the third equation of (15), we just directly substitute

the complex notations of n zð Þ and ξ z0ð Þ to have:

Re nðnÞ⋅ξðz0Þ
	 
¼ Reðn1 þ in2Þðξ1−iξ2Þ ¼ Re n1ξ1−n2ξ2 þ iðξ1n2−ξ2n1Þ

	
¼ n1ξ1 þ n2ξ2n

,
⋅ξ
,¼ cosφ0

Fourth Equation:
The left-hand side of the fourth equation can be expanded as:

ð2cosβcosβ0 þ cosφ0Þ
r2

¼ ð2r cosβ⋅r cosβ0 þ r2cosφ0Þ
r4

¼ −2ðdx⋅n1 þ dy⋅n2Þðdx⋅ξ1 þ dy⋅ξ2Þ þ ððdx2 þ ðdyÞ2ÞÞðn1⋅ξ1 þ n2⋅ξ2Þ
r4
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¼ −ðdxÞ2ξ1⋅n1−ðdyÞ2ξ2⋅n2−2dxdy⋅n1⋅ξ2−2dxdy⋅n2⋅ξ1 þ ðdxÞ2n2⋅ξ2 þ ðdxÞ2n2⋅ξ1
r4

¼�ðdxn1 þ dyn2Þðdxξ1 þ dyξ2Þ−ðdyn1−n2dxÞðdyξ1−ξ2dxÞ
r4

The right-hand side of fourth equation is:

nðzÞξðz0Þ
ðz−z0 Þ2

¼ ðz−z0Þ2nðzÞξðz0Þ
ðz−z0Þ2ðz−z0 Þ2

¼ ðz−z0ÞnðzÞðz−z0Þξðz0Þ
r4

¼ ðdxþ idyÞðn1−in2Þðdxþ idyÞðξ1−ξ2Þ
r4

¼ ðdxn1 þ dyn2 þ idyn1−in2dxÞðdxξ1 þ dyξ2 þ idyξ1−iξ2dxÞ
r4

Consider the real part of above equation:

Re
nðzÞξðz0Þ
ðz−z0 Þ2

( )
¼ ðdxn1 þ dyn2Þðdxξ1 þ dyξ2Þ−ðdyn1−n2dxÞðdyξ1−ξ2dxÞ

r4

We obtain:

ð2cos βcosβ0 þ cosφ0Þ
r2

¼−Re
nðzÞξðz0Þ
ðz−z0 Þ2

( )

Fifth Equation:
We can use the first equation to help us to prove this last

equation:

cos2β¼ 2cos2β−1¼ 1
2

nðzÞ
z−z0

þ nðzÞ
z−z0

� �2

ðz−z0 Þðz−z0Þ−1

¼ 1
2

nðzÞ2
ðz−z0 Þ2

þ 2
nðzÞ
z−z0

nðzÞ
z−z0

þ nðzÞ2
ðz−z0Þ2

 !
ðz−z0 Þðz−z0Þ−1

¼ 1
2

nðzÞ2
ðz−z0 Þ

ðz−z0Þ þ
1
2

nðzÞ2
ðz−z0Þ

ðz−z0 Þ

¼ Re
z−z0
z−z0

n2ðzÞ
� �

Thus, all the results in Eq. (15) are verified.
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