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Abstract A fast multipole boundary element method
(BEM) for solving general uncoupled steady-state ther-
moelasticity problems in two dimensions is presented in
this paper. The fast multipole BEM is developed to han-
dle the thermal term in the thermoelasticity boundary inte-
gral equation involving temperature and heat flux distribu-
tions on the boundary of the problem domain. Fast multipole
expansions, local expansions and related translations for the
thermal term are derived using complex variables. Several
numerical examples are presented to show the accuracy and
effectiveness of the developed fast multipole BEM in cal-
culating the displacement and stress fields for 2-D elastic
bodies under various thermal loads, including thin structure
domains that are difficult to mesh using the finite element
method (FEM). The BEM results using constant elements are
found to be accurate compared with the analytical solutions,
and the accuracy of the BEM results is found to be compara-
ble to that of the FEM with linear elements. In addition, the
BEM offers the ease of use in generating the mesh for a thin
structure domain or a domain with complicated geometry,
such as a perforated plate with randomly distributed holes
for which the FEM fails to provide an adequate mesh. These
results clearly demonstrate the potential of the developed fast
multipole BEM for solving 2-D thermoelasticity problems.
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1 Introduction

The boundary element method (BEM) has been applied to
solve uncoupled steady-state thermoelasticity problems for
more than three decades [1–6]. The BEM can be used to deter-
mine the deformation and stress fields in a structure under
a thermal load. The thermal load, in the form of a change
in temperature, is assumed to be given and its effect can be
included in a domain integral in the boundary integral equa-
tion (BIE) formulation for thermoelasticity problems. This
thermal term in the BIE can be converted to boundary inte-
grals using different approaches [1–9]. Therefore, efficient
boundary-only discretizations can be applied. As with the
BEM for elastostatic problems, the thermoelasticity BEM
has also been found especially effective in modeling thin
structures, such as thin films and coatings, under thermal
loads [10].

The fast multipole method [11–16] has been applied to
accelerate the BEM for solving 2-D elastostatic problems,
for example, by Fukui [17] and Liu [18] using complex vari-
ables, and by Yao et al. [19] using real variables in the multi-
pole expansions. More applications of the 2-D fast multipole
BEM for modeling porous, composite and functional-graded
materials can be found in Ref. [16]. However, to the authors’
best knowledge, the fast multipole BEM for solving 2-D ther-
moelasticity problems has not been reported in the literature.

In this work, uncoupled 2-D thermoelasticity problems
are considered, for which the steady-state temperature field is
assumed to be given and the thermal stress and displacement
fields are sought. The thermal effect is included in the BIE
by using the Galerkin vector [2,10] and the domain integral
is converted into boundary integrals. Therefore, only bound-
ary integrals are present in the BIE. Fast multipole expan-
sions and translations for the thermal term are derived and
implemented based on the earlier fast multipole BEM for
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Fig. 1 Domain V and boundary S

2-D elastostatic BIE [18]. Constant line elements are used in
the implementation and the direct integration of the kernels
are done analytically so that all the nearly-singular integrals
arising in modeling thin structure domains can be handled
accurately. Several numerical examples are studied to verify
the developed fast multipole BEM using analytical solutions
or finite element method (FEM) solutions using linear and
quadratic elements. Two thin-shape structures and a perfo-
rated plate with randomly distributed holes are included in
the numerical study to show the accuracy and effectiveness
of the BEM as compared with the FEM.

2 Fast multipole BEM formulation

The governing equations for a linear thermoelasticity prob-
lem in domain V (Fig. 1) with boundary S can be written as
(index notation is used):

σi j, j = 0, in V, (1)

σi j = Ei jkl (εkl − αφδkl) , in V, (2)

εi j = 1

2
(ui, j + u j,i ), in V, (3)

where σi j , εi j and ui are the stress, (total) strain and displace-
ment field, respectively, Ei jkl is the elastic modulus tensor,
α is the coefficient of thermal expansion, φ is the change of
temperature, ( ),i = ∂( )/∂yi , and δi j is the Kronecker δ

symbol. In this study, the mechanical body force is not con-
sidered and the temperature field φ is assumed to be known.

Applying the Somigliana’s identity, we obtain the follow-
ing direct BIE for 2-D thermoelasticity problems (we adopt
the notation used in Refs. [2,10]):

1

2
ui (x) =

∫

S

[
Ui j (x, y)t j (y) − Ti j (x, y)u j (y)

]
d S(y)

+C0

∫

S

[
Gi j, jk(x, y)nk(y)φ(y)

−Gi j, j (x, y)q(y)
]

d S(y), ∀x ∈ S, (4)

where ti is the traction, q = ∂φ/∂n is the heat flux, S is
smooth around source point x. The coefficient

C0 = 1 − 2ν

2(1 − ν)
γ, with

γ = 2(1 + ν)μα

1 − 2ν
(for plane strain), (5)

where ν is Poisson’s ratio, and μ is the shear modulus.
The two kernel functions Ui j (x, y) and Ti j (x, y) in Eq. (4)

are the displacement and traction components in the funda-
mental solution for 2-D problems (also called Kelvin’s solu-
tion) given by the following expressions [16,18]:

Ui j (x, y) = 1

8πμ(1 − ν)

[
(3 − 4ν)δi j log

(
1

r

)

+r,i r, j −1

2
δi j

]
, (6)

Ti j (x, y) = − 1

4π(1 − ν)r

{
∂r

∂n

[
(1 − 2ν)δi j + 2r,i r, j

]

−(1 − 2ν)
(
r,i n j − r, j ni

)}
, (7)

for the plane strain case, in which r = r(x, y) is the distance
between the source point x and field point y, n the outward
normal (Fig. 1). Note that a constant term −1/2δi j in (6),
which does not affect the solutions of the BIE, is added for
the convenience in the multipole expansions of the kernels.
The details of the multipole expansion will be described later.
The Galerkin vector in Eq. (4) is given as follows [2,10]:

Gi j (x, y) = 1

8πμ
r2 log

(
1

r

)
δi j , (8)

and the U kernel can be represented by the Galerkin vector
as:

Ui j (x, y) = Gi j,kk(x, y) − 1

2(1 − ν)
Gik, jk(x, y). (9)

Define

Qi ≡ Gi j, j = − 1

8πμ
(2 log r + 1) rr,i (10)

Then the thermal related term in BIE (4) (the second integral)
can be written as:

bi (x) = C0

∫

S

[
∂ Qi (x, y)

∂n(y)
φ(y) − Qi (x, y)q(y)

]
d S(y),

(11)

where

∂ Qi (x, y)

∂n(y)
= − 1

8πμ

[
(2 log r + 1) δi j + 2r,i r, j

]
n j . (12)
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Fig. 2 Complex notation and the related points for fast multipole
expansions

The fast multipole expansions and related translations for
the integrals with the U and T kernels in BIE (4) are given
in Refs. [16,18]. In the following, we only describe how to
deal with the thermal term in the BIE with the fast multipole
method.

To derive the fast multipole expansions for the thermal
term, as shown in Eq. (11), we use the complex notation
[15,16], which can simplify the derivations and improve the
efficiency of computation. First, it is noticed that a complex
representation of Qi in Eq. (10) can be written as:

Q(z0, z) = Q1 + i Q2

= 1

8πμ

[
log(z0 − z) + log(z0 − z) + 1

]
(z0 − z), (13)

where z0 and z are the complex representation of source (col-
location) point x and field (integration) point y, respectively
(Fig. 2).

Starting with expression (13), we now present the multi-
pole expansion, local expansion and their translations needed
in the fast multipole BEM [15,16].

2.1 Multipole expansion (Moments)

Assuming zc is a point close to the integration point z (Fig. 2),
that is, |z − zc| << |z0 − zc| and for k ≥ 0, we can derive
the multipole expansion for the second integral in Eq. (11)
on S0 (Fig. 2) as follows:∫

S0

Q(z0, z)q(z)d S(z) (14)

= 1

8πμ

∫

S0

[
log(z0 − z) + log(z0 − z) + 1

]

(z0 − z)q(z)d S(z)

= − 1

8πμ

∫

S0

[ ∞∑
k=0

Ok(z0 − zc)Ik(z − zc)

+
∞∑

k=0

Ok(z0 − zc)Ik(z − zc) − 1

]
(z0 − z)q(z)d S(z)

= − 1

8πμ

{
[N0(zc) − z0 M0(zc)]

−
∞∑

k=0

Ok(z0 − zc) [Nk(zc) − z0 Mk(zc)]

−
∞∑

k=0

Ok(z0 − zc)
[

Ñk(zc) − z0 Mk(zc)
]}

,

where the three moments are given by:

Mk(zc) =
∫

S0

Ik(z − zc)q(z)d S(z), (15)

Nk(zc) =
∫

S0

Ik(z − zc)zq(z)d S(z), (16)

Ñk(zc) =
∫

S0

Ik(z − zc)zq(z)d S(z), (17)

for k ≥ 0, and the two auxiliary functions are defined by
[15,16]:

Ik(z) = zk

k! , for k ≥ 0,

O0(z) = − log(z); and Ok(z) = (k − 1)!
zk

, for k ≥ 1.

Note that N0(zc) and M0(zc) are in fact constants (not
changing as zc changes). Note also that moments Nk(zc) and
Mk(zc) are related as shown in the following expression:

Mk(zc) = 1

k

[
Nk−1(zc) − zc Mk−1(zc)

]
, (18)

for k ≥ 1, which can be applied to calculate one of the two
moments when the other has been obtained.

2.2 Moment-to-moment (M2M) translation

If point zc is moved to a new location zc′ (Fig. 2), the new
moments can be obtained by using the moment-to-moment
translations:

Mk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Ml(zc), (19)

Nk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Nl(zc), (20)
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Ñk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Ñl(zc), (21)

for k ≥ 0, which are similar to those in the 2-D potential and
elastostatic fast multipole BEM [15,16].

2.3 Local expansion and moment-to-local (M2L)
translation

If zL is a point close to the source (collocation) point
z0 (Fig. 2), that is, |z0 − zL | << |zc − zL |. Expanding∫
S0

Q(z0, z)q(z)d S(z) about z0 = zL and using Taylor series

expansion, we obtain the following local expansion:
∫

S0

Q(z0, z)q(z)d S(z) = − 1

8πμ

{
(N0 − z0 M0)

−
∞∑

l=0

Il(z0 − zL) [Kl(zL) − z0Ll(zL)]

−
∞∑

l=0

Il(z0 − zL)
[

K̃l(zL) − z0 Ll(zL)
]}

, (22)

where the local expansion coefficients are given by the fol-
lowing M2L translations:

Ll(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Mk(zc), (23)

Kl(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Nk(zc), (24)

K̃l(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Ñk(zc), (25)

for l ≥ 0, which are similar to those in the 2-D potential and
elastostatic cases [15,16].

2.4 Local-to-local translation (L2L)

If the point for the local expansion is moved from zL to zL ′
(Fig. 2), we can show that the new local expansion coeffi-
cients are given by the following L2L translations:

Ll(zL ′) =
n∑

m=l

Im−l(zL ′ − zL)Lm(zL), (26)

Kl(zL ′) =
n∑

m=l

Im−l(zL ′ − zL)Km(zL), (27)

K̃l(zL ′) =
n∑

m=l

Im−l(zL ′ − zL)K̃m(zL), (28)

for l ≥ 0, where n in the above expressions is the number of
terms used in the first local expansion (about the point zL ).

Again, the translations are identical to those used in the 2-D
potential and elastostatic cases [15,16].

2.5 Expansions for the ∂ Q
∂n Kernel integral

We now consider the complex representation and multipole
expansion for the integral with the ∂ Q

∂n kernel in Eq. (11). The
complex notation for Eq. (12) can be written as:

∂ Q

∂n
= ∂ Q1

∂n
+ i

∂ Q2

∂n
(29)

=− 1

8πμ

[(
log(z0−z)+log(z0−z)+2

)
n + z0 − z

z0 − z
n

]
.

Thus, for the integral with the ∂ Q
∂n kernel in Eq. (11), we have

∫

S0

∂ Q(z0, z)

∂n
φ(z)d S(z)

= − 1

8πμ

∫

S0

{[
log(z0 − z) + log(z0 − z) + 2

]
n

+ z0 − z

z0 − z
n

}
φ(z)d S(z)

= 1

8πμ

∫

S0

{[
n∑

k=0

Ok(z0 − zc)Ik(z − zc)

+
n∑

k=0

Ok(z0 − zc)Ik(z − zc) − 2

]
n

−(z0 − z)n
n∑

k=0

Ok+1(z0 − zc)Ik(z − zc)

}
φ(z)d S(z)

= 1

8πμ

[
−2P0 +

∞∑
k=0

Ok(z0 − zc)Pk(zc)

+
∞∑

k=0

Ok(z0 − zc)P̃k(zc) − z0

∞∑
k=0

Ok+1(z0 − zc)Pk(zc)

+
∞∑

k=0

Ok+1(z0 − zc)Rk(zc)

]
, (30)

where the new multipole moments are:

Pk(zc) =
∫

S0

Ik(z − zc)nφ(z)d S(z), (31)

P̃k(zc) =
∫

S0

Ik(z − zc)nφ(z)d S(z), (32)

Rk(zc) =
∫

S0

Ik(z − zc)znφ(z)d S(z), (33)
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for k ≥ 0. The M2M translations for these moments are:

Pk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Pl(zc), (34)

P̃k(zc′) =
k∑

l=0

Ik−l(zc − zc′)P̃l(zc), (35)

Rk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Rl(zc), (36)

for k ≥ 0. The local expansion and M2L translations are:∫

S0

∂ Q(z0, z)

∂n
φ(z)d S(z) = 1

8πμ
[−2P0 (37)

+
∞∑

l=0

Il(z0 − zL)Jl(zL) +
∞∑

l=0

Il(z0 − zL) J̃l(zL)

+z0

∞∑
l=0

Il(z0 − zL)Jl+1(zL) +
∞∑

l=0

Il(z0 − zL)Sl(zL)

]
,

where

Jl(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Pk(zc), (38)

J̃l(zL ) = (−1)l
∞∑

k=0

Ol+k(zL − zc)P̃k(zc), (39)

Sl(zL) = (−1)l
∞∑

k=0

Ol+k+1(zL − zc)Rk(zc), (40)

for l ≥ 0. The corresponding L2L translations are:

Jl(zL ′) =
n∑

m=l

Im−l(zL ′ − zL)Jm(zL), (41)

J̃l(zL ′) =
n∑

m=l

Im−l(zL ′ − zL) J̃m(zL), (42)

Sl(zL ′) =
n∑

m=l

Im−l(zL ′ − zL)Sm(zL), (43)

for l ≥ 0.
The details of the implementation of the fast multipole

BEM for 2-D thermoelasticity are similar to that for 2-D
elastostatic BIE [16,18]. The only difference is that the new
b vector in Eq. (11) due to the thermal load needs to be added
to the right-hand side vector of the system of equations using
the above fast multipole formulations. In this work, constant
elements are used and all direct integrals are computed ana-
lytically (see Appendix) to avoid numerical integration. This
is important for analyzing thin structures using the BEM
[10,20–23] where nearly-singular integrals can be trouble-
some if they are not computed correctly. Note that piece-
wise constant elements can give poor results when they are

L

h
x 

y 

Fig. 3 A bar under different thermal loads (L = 5 m, h = 1 m), boundary
conditions: ux = 0 at (0, h/2); ux = 0, uy = 0 at (0, −h/2)
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Fig. 4 BEM results with the constant thermal load

used to solve beam bending type of problems, because they
cannot represent the rigid-body rotation on each element. A
large number of elements will be needed to obtain reasonable
results in the beam bending cases [24].

3 Numerical examples

We present five numerical examples to demonstrate the accu-
racy of the developed fast multipole BEM for solving 2-D
thermoelasticity problems. All the computations were done
on a desktop PC. In all the cases, the material has a Young’s
modulus E = 6.0 GPa, Poisson’s ratio ν = 0.22, and coeffi-
cient of thermal expansion α = 20.0 × 10 −6/◦C.

3.1 A bar under thermal loads

The first test for the BEM on the thermal stress analysis is a
bar model (a plane stress problem) as shown in Fig. 3. First,
a uniform temperature change φ = �T = 1 ◦C is applied
to the bar and the displacement field is calculated using the
BEM. The results of the x-component of the displacement
along the main axis of the bar are shown in Fig. 4 and com-
pared with the analytical solution (Ux = α�T x, 0 ≤ x ≤ 5).
Then a linear temperature change �T = x is applied to the
bar and the same results are shown in Fig. 5 and compared
with the analytical solution (Ux = α�T x2/2, 0 ≤ x ≤ 5).
Finally, a quadratic temperature change �T = x2 − y2 is
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Fig. 5 BEM results with the linear thermal load
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Fig. 6 BEM results with the quadratic thermal load

applied to the bar and the displacement results are shown
in Fig. 6 and compared with the analytical solution (Ux =
α�T

(
x3/3 − x/4

)
, 0 ≤ x ≤ 5). In all the three thermal

loading cases, the BEM is observed to deliver satisfactory
results with only 60 constant boundary elements.

3.2 Thin coating on a rigid cylinder

The coating on a rigid cylinder (a plane strain problem), as
shown in Fig. 7, is studied next using the developed BEM.
The annular region has an outer radius a = 10.1 m and an
inner radius b = 10 m. A uniform temperature change �T =
100 ◦C is applied to the coating. Under these conditions, the
analytical solution of the radical displacement at the outer
boundary is found to be:

ur = α�T a

2

(
1 − b2

a2

)
1 + ν

1 − ν[
1 + 1 − 2ν

1 + (1 − 2ν) b2

a2

(
1 − b2

a2

)]
. (44)

x

y

b

a

Fig. 7 Coating on a rigid cylinder (a = 10.1 m, b = 10 m), boundary
conditions: ux = 0, uy = 0 on the inner boundary (r = b)

Several BEM discretizations are used with the number of
boundary elements increasing from 40 to 5,000 and com-
pared with the FEM (ANSYS® Q4 (linear, quadrilateral 4-
node) elements. The obtained BEM and FEM results for
the radial displacement and stress components on the outer
boundary of the coating are shown in Table 1 and compared
with the analytical solution in Eq. (44). Both the BEM and
FEM give very good results in this case. As shown in the
table, when the number of boundary elements is 200, the rel-
ative errors of radical displacement (ur ) and circumferential
stress (σθ ) of the BEM results are already less than 1 %.

3.3 Coating on a 2D gear model

The coating on a 2D gear model (a plane stress problem),
as shown in Fig. 8, is studied next. The coating is applied
with a uniform temperature change �T = 100 ◦C. Both the
BEM and FEM with Q8 (quadrilateral, quadratic 8-node)
elements are applied. The FEM mesh on one tooth is shown
in Fig. 9. The BEM results at point A near the center of the
tooth shown in Fig. 9 are compared with the FEM results as
shown in Table 2. It is observed that all the BEM and FEM
displacement and stress component results are converged,
except for the FEM stress component in the y-direction in the
FEM results. Due to the limitation of the AN SY S® academic
license, no larger FEM models could be attempted.

3.4 A perforated plate model with uniformly distributed
holes

A perforated plate with 7×7 (a total of 49) uniformly dis-
tributed holes (a plane stress problem) as shown in Fig. 10
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Table 1 Comparison of BEM
and FEM results for the thin
coating model

Method Number of
elements

Degrees of
freedom

ur (m) σθ (Pa)

FEM (Q4 elements) 16 64 3.1203E-04 −1.5256E + 07

80 320 3.1343E-04 −1.5228E + 07

403 1, 598 3.1288E-04 −1.5139E + 07

4, 405 11, 730 3.1349E-04 −1.5202E + 07

BEM (constant elements) 40 80 3.0979E-04 −1.4790E + 07

200 400 3.1342E-04 −1.5131E + 07

1, 000 2, 000 3.1330E-04 −1.5149E + 07

5, 000 10, 000 3.1346E-04 −1.5151E + 07

Analytical 3.1349E-04 −1.5189E + 07

A

x

y 
O

Fig. 8 Coating on a 72-tooth rigid gear model (pitch diameter = 10 m,
coating thickness = 0.1 m, point A at (−0.0674745, 13.09235), bound-
ary conditions: ux = 0, uy = 0 along the gear and coating interface)

is considered in this case. A uniform temperature change
�T = 100 ◦C is applied to the plate which is fixed along
all the four outside edges. The computed results using the
BEM and FEM (with Q8 element) at point B are listed in
Table 3. It is observed that the BEM and FEM results for
the x-component of displacement and y-component of stress
are converged and agree with each other. However, the y dis-
placement and shear stress using both methods are not yet
converged when the number of elements increases. This is
because point B lies on the horizontal symmetric axis of the
plate, and the results of the y-displacement and shear stress
should be close to zero. Indeed these values are very small
compared with the other components of displacement and
stress. In Fig. 11 the computed x-component displacement
on the edge of the center hole are plotted, where the BEM

A

Fig. 9 FEM mesh for the coating on one tooth of the gear model

and FEM results are shown to agree very well. In Figs. 12 and
13, the contour plots of the x-component displacement and
stress using the BEM are shown, which show the symmetry
in the results as expected from this case.

3.5 A perforated plate model with randomly distributed
holes

Finally, a perforated plate with 7×7 (a total of 49) randomly
distributed holes (a plane stress problem) as shown in Fig. 14
is considered. A uniform temperature change �T = 100 ◦C
is applied to the plate which is fixed along all the edges.
Unfortunately, in this case, it is impossible to mesh the plate
with AN SY S® because some holes are very close to each
other and the model requires very fine mesh in the narrow
regions. Thus, BEM is the only method used to obtain the
results. The contour plots of the x-component displacement
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Table 2 Comparison of the BEM and FEM results for the gear coating model

Method Element
size

Degrees of
freedom

Displacement and stress at point A

ux (m) uy (m) σx (Pa) σy (Pa) τxy (Pa)

BEM (constant elements) 1.00E-02 16, 848 −5.6770E-07 2.4332E-05 −1.1341E+07 −5.4191E+03 −2.4732E+05

1.00E-03 152, 640 −5.7394E-07 2.4332E-05 −1.1476E+07 −5.4638E+03 −2.5040E+05

5.00E-04 304, 704 −5.7417E-07 2.4332E-05 −1.1476E+07 −5.4640E+03 −2.5041E+05

3.05E-04 499, 104 −5.7420E-07 2.4332E-05 −1.1476E+07 −5.4641E+03 −2.5042E+05

FEM (Q8 elements) 1.00E-02 16, 850 −5.7716E-07 2.4564E-05 −1.1573E+07 2.3004E+05 −2.4814E+05

5.00E-03 49, 096 −5.6780E-07 2.4344E-05 −1.1477E+07 5.1027E+04 −2.4735E+05

1.50E-03 403, 038 −5.7445E-07 2.4333E-05 −1.1477E+07 2.9332E+03 −2.4965E+05

1.46E-03 446, 696 −5.7486E-07 2.4333E-05 −1.1477E+07 1.4943E+03 −2.4978E+05

Fig. 10 A perforated plate model with uniformly distributed holes
(plate side length = 22 m, radius of holes = 1 m, point B at (12.5,
11.0), boundary conditions: ux = 0, uy = 0 on all the four outside
straight edges)

and stress are shown in Figs. 15 and 16, respectively. The dis-
placement and stress results at point C are shown in Table 4.
In this case, the BEM does not need any special treatment
on the meshing part when modeling the perforated plate with
randomly distributed holes.

4 Discussions

In this work, the fast multipole BEM for 2-D elastostatic
problems is extended to the 2-D thermoelasticity case. The
thermal load term in the BIE, or the new right-hand side
vector in the BEM system of equations, is calculated using
the fast multipole method. The multipole expansion, local
expansion and their corresponding translations for the ther-
mal term are presented in this paper for the first time. Numer-
ical examples show the accuracy and effectiveness of the
developed fast multipole BEM for the thermoelasticity analy-
sis of 2-D structures, especially thin structures or structures

Table 3 Comparison of results at point B from BEM and FEM

Method Element
size

Degrees of
freedom

Displacement and stress at point B

ux (m) uy (m) σx (Pa) σy (Pa) τxy (Pa)

BEM (constant elements) 0.1257 6, 300 −9.0746E-05 2.4936E-07 −3.9377E+06 −1.7971E+07 3.2208E+04

0.0251 31, 500 −9.0540E-05 −5.7575E-08 −3.9120E+06 −1.8057E+07 2.4074E+03

0.01 157, 500 −9.0532E-05 5.4860E-09 −3.9055E+06 −1.8071E+07 −3.6188E+02

0.005 787, 500 −9.0581E-05 −3.0541E-09 −3.7997E+06 −1.8072E+07 −6.5026E-01

0.0016 1575, 000 −9.0548E-05 9.4539E-10 −3.8853E+06 −1.8065E+07 1.1551E+00

FEM (Q8 elements) 0.2 53, 036 −9.0527E-05 −1.6652E-09 −3.9027E+06 −1.8063E+07 −1.2917E+00

0.1 213, 026 −9.0535E-05 −3.1307E-09 −3.9062E+06 −1.8063E+07 −5.1610E+00

0.065 481, 674 −9.0538E-05 −3.4652E-09 −3.9067E+06 −1.8063E+07 −5.0363E+00
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Fig. 11 Plot of ux on the edge
of the center hole in the plate
(BEM has 6300 DOFs and FEM
has 213026 DOFs)

Fig. 12 Contour plot of ux (BEM, 157500 DOFs)

with complicated geometries which are difficult for the FEM
to handle because meshing of the domain can be challenging
and time consuming.

Although the BEM is much easier in meshing and accurate
in analysis, the efficiency in computation still lags compared

Fig. 13 Contour plot of σx (BEM, 157500 DOFs)

with the FEM in solving a comparable model with the same
level of accuracy, even with the fast multipole method. There-
fore, further improvement in the algorithms and optimization
of the code need to be investigated. For stress analysis prob-
lems, it is beneficial to apply high-order boundary elements,
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Fig. 14 A perforated plate model with randomly distributed holes
(plate side length = 22 m, radius of holes = 1 m, boundary conditions:
ux = 0, uy = 0 on all four outside straight edges)

Fig. 15 Contour plot of ux (BEM, 101440 DOFs)

such as quadratic elements, so that a much smaller number
of elements can be used to solve the problem with the same
or higher accuracy, when compared with the current imple-
mentation using the constant elements.

Fig. 16 Contour plot of σx (BEM, 101440 DOFs)

A multi-domain version of the developed fast multipole
BEM can be applied to solve thermal stresses and interface
cracks in multi-layered thin films and coatings. It can also be
extended to the 3-D thermoelasticity BIE to study more real-
istic 3-D models under the thermal load. Fracture mechanics
problems of cracks in structures under a thermal load can
also be studied using the fast multipole BEM. Coupled ther-
mal and elasticity problems can also be attempted using the
fast multipole BEM. Other fast solution methods, such as
the adaptive cross approximation method [25,26], can be
applied, which may be easier to implement than the fast
multipole BEM.

Acknowledgments The authors would like to thank one of the anony-
mous reviewers of the manuscripts for pointing out the relation as shown
in Eq. (18) between the two moments.

Appendix: analytical integration of the thermal related
kernels

The integrations of the two thermal related kernels in Eq. (11)
on a constant element or line segment �S shown in Fig. 17

Table 4 BEM results at point C for the plate with randomly distributed holes

Degrees of freedom Displacement and stress at point (13.2, 13.2)

ux (m) uy (m) σx (Pa) σy (Pa) τxy (Pa)

6,340 −8.2422E-04 5.7292E-04 −1.0154E+07 8.1175E+06 1.8518E+06

12,680 −1.0492E-03 5.1055E-04 −1.0052E+07 8.0990E+06 1.8709E+06

25,360 −1.0467E-03 5.1797E-04 −1.0048E+07 8.1031E+06 1.8633E+06

50,720 −1.0454E-03 5.2151E-04 −1.0046E+07 8.1055E+06 1.8595E+06

1,01,440 −1.0448E-03 5.2326E-04 −1.0045E+07 8.1068E+06 1.8575E+06
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Fig. 17 Analytical integration on a constant element

(from point 1 to point 2) can be evaluated analytically as
follows (see also Appendix A of Ref. [16] for the analytical
integration of other kernels). First, we define:

Ji ≡
∫

�S

Qi d S = 1

8πμ

∫

�S

[
2 log

(
1

r

)
− 1

]
rr,i d S, (45)

Ki ≡
∫

�S

∂ Qi

∂n
d S

= 1

8πμ

∫

�S

[(
2 log

(
1

r

)
− 1

)
ni − 2r,i

∂r

∂n

]
d S, (46)

for i =1 and 2.
In the local coordinate system n − t at y on �S (Fig. 17),

we have

J (n−t)
1 = d

8πμ
[2I0 − (T2 − T1)] , (47)

J (n−t)
2 = 1

8πμ

[
r2

1 log r1 − r2
2 log r2

]
, (48)

K (n−t)
1 = 1

8πμ
[2I0 − (T2 − T1) − 2d (θ2 − θ1)] , (49)

K (n−t)
2 = d

4πμ
log

(
r1

r2

)
, (50)

where

I0 = −d(θ2 − θ1) + (T2 − T1) − T2 log r2 + T1 log r1. (51)

Applying the transformation for vectors in 2-D, we obtain
the results for Ji and Ki in the global coordinate system.
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