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ABSTRACT

This paper presents the formulation for the finize
deflection analysis of heated elastic plates by zz=
boundary element method (BEM). A relaxation iters-
tive technique is applied to obtain the numeriecal
solutions.

1.INTRODUCTICON

Very few applications of the BEM to the geometri-
cally nonlinear analysis of plates have beem rercri-
ed, Tanaka (1] ,Kamiya et al.(2),(3) and Ye apd L:iu
(4) are known to have published werk in this fielzZ.
This paper, as a further development of the previous
work (4), gives an analysis of the large defleciZon
problams of thermoelastic plates by the BEM,

2.GOVERNING DIFFERENTIAL EQUATIONS AND RELATICKE

Let us denote by s1 a two dimensional domain enclcsec
by the boundary r~ with Cartesian coordinates x, =znt
¥s Whieh represent the median plane of a flate elcz-
tie plate, with z denoting the distance frea thi:s
plane (see Fig.1). The thickness of the plate is =z.
The displacements, in the x, , x3 and z directiczs,
of points on the middle surface are dencted by u, .
u, and ,w, respectively. Let T(x, ,xz,z) be the tz=c
rature distribution, o the coefficient of the lirzar
thermal expansion, sy the Poisson® ratic and Z the
Young® modulus.

The bending and twisting moments are
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where 51 is the Kronecker symbol and i,j,l,m=1,2.
The rigidity tensor is
Pyj1aD 3 38;,7(1-9)0;,0,,] ,
where D=Eh3/12{1-4%),
The aymbol HT denotes the quantity
TR . Shfz

g o T(%qys%,02)2dz
-h/2
The shear forces may be represented as
=M.. .==D,, o F "
Qi HlJ,J D;Jlm“’lm; HT.l (2)

On the boundary, the bending and twisting moments
are

Hn=-[r{u.nn+w.tt}+mT (3)

Mnt=-Dl:‘t-‘.?}w,nt (4)

where n and t are the outward normal and tangent at
the boundary, respectively.
The shear forces Ve and the Kirehhoff equivalent

shear force Kx on the boundary in the small deflec-
tion case are

V,=Q;ny (5)
anvn+ﬁnt.s (6)
where ng (i=1,2) are direction cosines of the normal

N«

The governing nenlinear differential equations for
the finite deflection problems of the thermoelastic
plates are

P '
D V""f:—-q+h5‘ijw,ij +?’B.T 53
. =0 b
SiJ!J1 ET ;
a
L= o= TR SR
€57 3luy g¥ey g Wog¥ey)
ﬁ'ij=1-:ij1m{e1m-ﬁi.51m] (7d)
whare
T_=% S ‘mr‘j“'T‘{:nr.I X.,,2ldz
=h/2 ol
and E. . iz the elastic modulus tensor, €.,. and
1j1m 1]

Eij are the 1n-plane STralns HUU bul'bsbEs, Ltapul=
tively.
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Fip.1 Notatlons

3.INTEGRAL EQUATIONS

Starting with the eguation (7a) and making use of
the generalized Green identity one can obtain the
following integral equations

foaw®ant § m, Viurda+

Jo (WHK_-wK® 4w, M¥ -w,* M )dp

_ Dw(P. ) , P2 (22}
{% DBy ) P el (83)

where q=a+hﬁlj"’ij and
w*(P,P, |= ;“ rilnr (g)

ie the fundamental solution of the biharmonic equazioc”;
H;&nd K;'are determined by the substitution of w=w?

into the formulae (3) with My=0 and (6) respectively,

Differentiation of the equations (8) with respect
to £ (see Fig.1) provides

L. qw r‘ dpn+ .LLMT (Viu®) g dat

jrt wig Kn-wK‘:,! s 8 = T
i DH.;(P,J ¥ P. €72 {10z
{ ow,g(p,) . Py el (10%)

where E?’w*].!:nosﬂ.KEKT and the angle E. is

defined in Fig.1(b).

Consequently, a4 set of boundary integral equatiors,
conaisting of (8b) and (10b), is now formulatesd
which cerresponds +o the nonlinear bending deforzz-
tion inecluding unknown components of the aqeflacticz,
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shear force on the boundary.
The second domain integral on the left-hand side of
the equation (10a}, according to Mikhlin[5], is a
singular integral with weak singulerity which ean
not be differentiated directly under the integral
sign. The proper expression for the derivative of
this singular integral can be written as

3
8% Lf{:l'(15}'2"'13"'1':“":i.;M'I":"-ﬂ“'*;''ijdﬂ"+
Mg (Pe)T (11)

where

Wf""ﬂ'ij:T;ET?Hlj'Er'ir'j} (12)

and ( ),i= { )/ ¥4;- Thus the differemntiation of
both sides of the equation (10a) with respect to the
coordinates x.j of the source point P, leads to

i = - 1
Dwyy g (Po)=f,qudy cdar | My (V2), | cane

5
o . E - -+
i (P }Eij+ Sr(w’inn “Kn.ij+

tw, M*® ..-w.;ijmn}dr, Po€N (13)

The formulae (8a), (10a) and (13) can be used to
evaluate the deflection, rotation, bending and twis-
ting moments at any point inside the plate when the
boundary unknowns have been determined.

By virtue of the generalized Qreen identity, one can
obtain from the equations (7b),(7c) and (7d) the
following integral equations which correspond to the
membrane deformatiocn of the plate

» - l *
fePickdr- jr-:'ikukdr-:g [ Sk pdar
* . u,(Pe} , P. e (14a)
+L5"ikkan, dfn= {1 ittes o
Eui(Pl} ' Pa E.Ir' {1Lh}
where U;k and pf& are the fundamental solutions of

the governing equations of the two-dimensional elas-
tieity given in [6] p.141 and p.142; and

i

- i

81" TR Tr {Er'ir'kr'f
+{1_"‘;v.‘][Eikrfli-a-ilr-]k"ailr-ijl {15“'

here =9/ {1+9).

Differentiating (1la) with respect to X,; and taking

10L0 ACCOUNL Ol Lhe OerlvAailve wi wue silgutal 1oie-
gral with weak singularities one obtains the exprea-

ssion of uy 3 in the domain. Substitution of this
]

expression into the geomeirie relations {7c) and “he
constitutive relations (7d) provides the followixz:
expression for membrane stresses inside the plate

6y |IP.1 )= §,Dg P 555 ity dr-
'5!gTijklu'kw'ldﬂ+£nH1j“T'dﬂ*
G
BTy (B gV g ey B 5 3

GuT, "
- -7 a;.,j Pe €12 | "3]

where the expressions for Dijk and Sijk can be found
in (6], p.142, and

Ti5x1 T3 17

" G ‘4
Hij_m’_{a},’]_gr'if’jj (18]
where ¢ijk1{P'P') is given in the Appendix.

It is not diffiecult to prove that the fumctions
Tiikl and Hij satisfy the condition for the exis-

tance of the Cauchy principle values of the relatsd
singular integrals.

Thus, the formulation of the boundary integral egia-
tions for the finite deflection analysis of heated
elastic plates has been accomplished. These egusticns
will be solved numerically by the BEM with & releza-
tion iterative technique which has been developed iIn
our previous work [(4].

L.NUMERICAL EXAMPLES

The applicability and some advantages of the press=zt
approach are briefly illustrated by the followins
examples,

Figure 2 shows the results cbtained for a clemped
cireular plate under uniform lateral lead. The
results are compared with the analytical scluticrs
(7], and the sgrecment between the two solutiens i:
perfect for 20 constant boundary elements.

Figure 3 shows a circular plate subjected to the
non-uniform temperature distribution

T{r,z)=[Te+Ts (1-r¥/a”)] (1422/3n)
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where r=(x®+x2)"¥, T. and T, are constants. The
plate is clamped at the edge. The results obtained
by using 12 constant boundary elements for T=T:/Te
=2.0 are portrayed. In comparision with the bouzdary
plement solution based on the Berger equation [3],
the present results generally are in better agreze-
ment with the solution by the Runge-Kutta-Gill zmathec
also given in (31].

Figure 4 illustrates the maximum deflection of the
plate in the above example vs. the temperature Zis-
tribution with different ratio ef the plate racius
to the plate thickness K=a/h,

5.CONCLUSION

The present paper shows that the boundary elemszz
method can be employed to solve the finite deflec-
tion problems of the heated thin elastic plateswith
satisfactorily accurate solutions.
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AFPENDIX

The expression of ¢,
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ABSTRACT

In this paper, we do not obtain the fundamental solutions fe:
shallow shells directly, but first by reducing the probles 1o
the analysis of two equivalent thip-plates, then, by couplirz
the solutions of spline boundary element method for the  tw:
plates, The results with satisfactory pricision can be obtain-
ed even when fewer depgrees of freedom are implemented. 411 the
unknowns, both at interior points and on boundaries, can L=
calculated simultaneocusly and both linear and non-linear ane-
lysis for shells and plates can also be worked out inm a singls
programm.

1. INTRODUCTICN

It is rather com licated ta find the fundamental solutions ol
challow shelléﬂ“ﬁnste&d of using the ordinary direct approesch,
the authors simplified the bending problem of shallow shells
to analysis of two thin-platea. Satisfactory results can be
observed by employing spline boundary element method for thin-
Flate,

2,BASTC PRINCIPLE
For a shallow shell whose mid-surface equation is Z:%fs,x’+%51

The governing equations under normal loads q can be written as
DV'Y'W = L(W,0) +vap+ 4

77’y = -Et[FL(LV) + A (£.-
In which
g A o8 &
YV o= 5;:+5;1, ?i = Ky E;:-rkx 5;:

thickness of shell
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