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1. INTRODUCTION

The C' continuous representations of boundary geometry and variables in the BIE/BEM not only
provide more accurate resulis, but are also demanded by some BIE formulations, such as the
"hypersingular” BIE formulations of certain problems [1, 2]. There are several types of C', or
even C*, boundary elements in the literature. Liggett and Salmon [3] introduced cubic spline
interpolation in the discretization of BIE formulation. In this interpolation, nodal values of the
function and second derivative of the function are used. The nodal values of the second derivative
are obtained in terms of the nodal values of the function by solving a separate set of equations.
Thus, this method has a global character in the sense that the function inside one element is actually
determined by all the nodal values of the function on the enlire curve. 'Watson [4] inroduced
Hermitian cubic elements in BEM for 2-D problems, The problem with the Hermitian elements
is that the tangential derivatives of the function and even cross-derivatives (for 3-D problems)
need to be introduced at the nodes. These derivatives are vsually not the boundary variables in
the conventional BIE formulation and are woublesome to deal with. B-splines have been used in
BEM for some time and a more recent work is given by Cabral er al [5]. The important characier
of he B-splines is that the spline curves do not pass through the specified nodes (for geometry)
or the nodal values {for function), The geometry (or function) within an element is defined by
four control points (or coefficients) multiplied by blending functions. Positions of the control
points or values of the coefficients are unknown in advance and need (o be determined by solving
a system of linear equations (of the same size as that of the BEM system) relating the control
poinis o the nodes or the coefficients 10 nodal values of the function. Although the matrix of this
system has some special features, the solution of this additional system will reduce the efficiency
of the method, especially for large real engineering problems. All the above mentioned C ' or C*
boundary elements have been applied only to 2-D problems.

Overhavser ¢! continuous line elements for 2-D problems were developed by Ortiz ef al
16], and surface elements for 3-D problems by Hall and Hibbs [7-9]. The main advantage of the
Overhauser elements is that the nodes or nodal values of function are used directly in representing
the geometry or function on the elements. No derivatives of the function {as in the cubic splines
and Hermitian elements) or some intermediale guantities (such as the control poinis or coefficients
in B-splines) are involved. Thus the definitions of the Overhauser elements are straightforward
and easy W program. Nomerical resulis obtained by using Overhauser line elements for 2-D
problems [6, 10] clearly show greater accuracy and efficiency compared with the commonly



applied C? clements and other cubic spline elements. Numerical examples of the Overhauser
surface (quadrilateral and triangular) elements for 3-D problems, though limited in numbers [7-9],
show similar advantages of the Overhauser elements over the usual surface elements regarding
accuracy and efficiency.

In this paper, the Overhauser surface elements are applied to 3-D acoustic wave problems
for which the "hypersingular” BIE [11] is employed to overcome the fictitious eigenfrequency
difficulty of the conventional RIE This "hypersingular” RIE formulation requires, theoretically,
C' continuity of the density functions [2] in the neighborhood of the source point. Data from
numerical experiments involving acoustic scattering problems show that the Overhauser surface
elements, in general, can give comparably accurate results with much fewer nodes on the boundary
and less compuier running time, compared with two types of guadratic elements, namely,
conforming quadratic elements and non-conforming quadratic elements. Thus in addition to their
high accuracy, the Overhanser surface elements can prodoce a much smaller system of linear
algebraic equations W solve. This is an important feamre for the applications of BEM on
MICrOCompuiers or workstadons,

2. THE OVERHAUSER ELEMENTS

The Overhauser line element [6, 7] for 2-D problems is defined by four nodes along a curve,
where the wo inner nodes are at the ends of the element considered and the two outer nodes are
on the adjacent elements. Two parabolas are constructed by (he first (hree and last three nodes,
respectively, The Overhauser carve is thus formed by a linear blending of the two parabolas. The
curve is guaranieed o have inter-clement continuous slopes at the nodes. Functions defined on
the curve are interpolated in a similar way.
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{a) Quadrilateral element, (b} Triangular efement.

Fig, 1. The Overhauser C' continuous surface elements.

The comstruction of the Overhauser quadrilateral (surface) element [7, 8], Fig.1.(a}, is a
straightforward generalization of the line element. Sixteen nodes are used in the definition of the
quadrilateral element, where four nodes are placed at the corners of the element and twelve others
arc on the surrounding elemenis. There are aliogether sixteen shape functions employed in (he
interpolations of the surface and functions defined on the surface. Construction of the Overhauser



triangular element (8, 9], Fig.1.(b), on the other hand, is much more complicated. The triangular
clements are necessary because the quadrilateral elements alone are not sufficient to produce a
mesh which can ensure C ' comtinuity for all kinds of closed surfaces, [8, 9]. Twelve nodes, three
on the comers of the element and nine others on the surrounding (quadrilateral) elements, are
used in the definition of the triangular elements. [n contrast 1o the quadrilateral element, the twelve
shape functions for the triangular element are lengthy and the derivatives of the shape functions
are even more tedious. However, the efficiency in computation of the Overhauser elements will
not be hindered by their larger number and lengthy expressions of the shape functions, as will be
discussed in the last section. A complete set of the Overhaoser C ' continuous surface elements,
including the reduced version of the quadrilateral elements for surfaces with corners or edges and
the ransition elements for imbedding the riangular element in an otherwise quadrilateral mesh,
is presented in detail in [£].

The most important feature of the Overhauser elements is that unlike all other €' or C?
boundary elements, only the nodes or nodal values of functions are employed in the definition of
the elements. This same feature is used in the definitions of lower order elements (e.g. linear or
quadratic elements). The computer program using lower order elements would keep the same
structure il the lower order elements were replaced with the Overhauser elements. No additional
work, such as finding the nodal values of the second derivatives for cubic splines [3] and the
control points or coefficients for B-splines [5], would be needed except for handling the shape
functions. Thus upgrading existing codes with the Overhauser elements is quite strightforward.

The Overhauser quadrilateral and triangular elements developed by Hall and Hibbs [7-9]
are applied in this paper. Little modification is made for the triangular element. A new set of side
parameters used in the definition of the triangular elements is introduced, which can significantly
simplify the expressions of the derivatives of the shape functions. The wransition (quadrilateral)
elements introduced by Hall and Hibbs are not used, Instead, they are simulated by using the
original quadrilateral element, which is done by specifying same coordinates for associated nodes,
i.e. treating the transition elements as special cases of the original quadrilateral elements. In this
way. one will not need to evaluate and store additional seis of shape functions for the ransitional
elements. It is tempting for one to simulate the triangular element by the quadrilateral element.
However, careful considerations reveal that the inter-element smoothness will be violated by the
simulated triangular element.

3. THE COMPOSITE BIE FORMULATION

The conventional boundary integral equation for exterior acoustic problems is

. . do(P) 9G(P,P,)
CiP)0O(F )= :!‘[G{P,Pﬂ} -~
where ¢ is the total wave, & the incident wave (for scattering problems), G(P, P,) the Green's

function for the Helmhollz equation, a the outward normal to the boundary § of the exterior
domain F, and the coefficient C(P,) depends on the smoothness of S,
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The solution of Eq. (1) suffers a nonuniqueness problem when the wavenumber is near or
equal 0 one of the so called fictitious eigenfrequencies [12]. How o circumvent this fictitious
eigenfrequency difficulty (FED) for (he exterior problems has been a major research area in the



applications of BIE to acoustics. The mosi effective method to deal with the FED is due to Burton
and Miller [13]. They proved that the composite BIE formulation, using a linear combination of
the conventional BIE (Eq. (1)) and the following "hypersingular” BIE
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where n, is the outward normal at P, € §, can provide unigue solutions at all wavenumbers. The
major difficulty in implementing this composite BIE formulation has been the treatment of the
hypersingular integral in Eq. (2). A recently proposed approach [11] to deal with thishypersingular
imtegral is to transform Eq. (2), by employing some integral identities established in [14] for the
static Green function G(P, P, ), into the following weakly-singular form,
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where x, and x, are coordinates of P and P, respectively. All the integrals in Eq. (3) are at most
weakly singular and the commonly used quadratures for conventional BIE are sufficient
compute them. However, there is a theoretical restriction on the density function in cither Eqg. (2)
or Eg. (3). For the hypersinguolar integral in Eq. (2) o exist or for the procedures leading to Eqg. (3)
to be valid, the density function ¢ must be C ' continuous, at least at the source point F,, see e.g.
[1,2,11]. This restriction on the "hypersingular” BIE will demand, theoretically, C' boundary
elements in the discretization of Eq. (3),

VP e §, (3

The Owverhauser elements will be applied o the composite BIE formulation, ie. the linear
combination of Eq. (1) and Eq, (3), in the next section. For comparison, two types of quadratic
boundary elements are also applied, namely, conforming and non-conforming quadratic elements
(quadrilateral and triangular). The conforming quadratic elements are the commonly used eight
node quadrilateral and six node riangular elements in the BEM literature. These elements are in
the C " element category and violate the smoothness requirement for Eq. (3). Nevertheless, if the
smoothness requirement is relaxed in some sense and certain lechniques are employed o handle
the nonuniqueness of the gradient of ¢ at the source point, good results can be obtained by using
these conforming elements [11]. However, the validity of applying the conforming quadratic
elemenis o "hypersingular” BIE's is still an open question. The non-conforming quadratic
clements are oblained by simply moving the nodes some distance inside the elements. Hence the
€ continnous requirement on the density function is satisfied in the neighborhood of the source

point.



4. NUMERICAL RESULTS

The scattering problem of a plane incident wave ¢ from a rigid sphere (96/dn = Oon the boundary)
of radius a is considered here. The magnitudes of the ratios of the scatiering wave 6° 0 o' at a
radius R=3g are plotled versus the angle 8 between the direction of the incident wave and R, In
all the: cases, M is the ttal number of elements on the sphere and N the number of nodes. Two
plots of the Overhawser clement meshes for the sphere are shown in Fig. 2.

All the BEM resulis reported here were obtained by applying the composite BIE formulation
mentioned in the previous section and the wavenumbers studied are fictitious eigenfrequencies
at which the conventional BIE formulation cannol provide unique solutions (indicated by a large
conditicn number of the coefficient matrix). The computation was performed on an Apollo LOOOO
machine.

Figure 3 shows the convergence of the Overhauser elements at wavenumber ka = 2x, The
convergence of the resolis 15 observed as the number of elements increase. It is noticed that resulls
on the shadow side (8 = () degree) converge at a slower rate than on the illuminated side (8 = 180
degree, backscattering direction). This is a typical phenomenon for the BEM solutions of this
problem,

Figure 4 is a comparison of the conforming quadratic, non-conforming quadratic and
Owverhauser elements, at ka = . where the numbers of elements are fixed atM = 56. The numerical
values at the shadow side by the Overhauser elements are not as good as the conforming and
non-conforming quadratic elements, but the computer running time for the Overhauser elements
15 much less than those for the later rwo. Notice that the size of the sysiem of equations (N by N}
for the Overhauser elements is only about [/3 of that for the conforming elements and 148 of that
for non-conforming elements.

Figure 5 is a comparison of the three types of elements, at ka = m, where about the same
numbers of nodes are used for the three elements. This is probably a more important COmparison
since number of nodes used is closely related to the size of the system of ¢quations and usually
is chosen as the parameter for comparison of different elements in BEM literature, e.g, [3]. [Lis
shown that the best results are achieved by the Overhauser elements in this case. The results by
the non-conforming elements are unacceplable due to the small number of elements which can
be generated from the given number of nodes. However, the ronning time for Overhauser elements
is the longest in this case, while for the non-conforming elements the shortest. The running time
{mainly the system formation time plus the solution time) for the three types of elements will be
discussed in more detail in the next section.

Figure 6 is a more realistic comparison of the three elements, at ka = 2r First, the
non-conforming elements were tested by using meshes of increasing numbers of elements (or
nodes) ontil reasonmably good results were obtained. Then, the conforming and Overhauser
clements were tested in the same way until the results of about the same accuracy as that by the
non-conforming elements were achieved. The results by the final meshes of the three elements
were plotied and the rinning time recorded. 1t is observed that for the conforming elements, about
the same number of nodes as that for the non-conforming elements is needed o achieve about
the same accuracy, while for the Overbauser clements, the nunber of nodes needed is only nearly
1/3 of those for the other two types of elements. More importantly, the running time of the
Overhauser elements is the shortest, about 34 of that of the non-conforming elements and /3 of
that of the conforming elements,
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Fig. 2. Overhauser element meshes for the sphere.
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5. DISCUSSIONS

The high accuracy of the Overhauser surface elements is further demonstrated in this paper by
the numerical examples of acoustic wave problems. To achieve the same level of accuracy,
considerably fewer nodes can be employed for the Overhavser elements than for quadratic
elements.

One might expect that the compuler lime for the Overbavser elements would be longer than
for the quadratic elements. Considering the large number and lengihy expressions of the shape
functions for the Overhauser elements, this will be true, at least for setting up the system (formation
time) as stated in [7]. However, this will be changed if the shape functions and their derivatives
are evaloaied only once and then stored, as is done in the computer codes used for this comparison
study. In this way, the computation of shape functions would not be a factor in the running time
for solving a problem. The formation time is then proportional to the factor N x M x §, where N
is the number of nodes. M the number of elements and § the number of shape functions (equal w0
the number of summations performed for the integration om an clement). Suppose (hat most of
the elements used are guadrilateral ones, then N = 3M, 8M and M, approximately, for the
conforming quadratic, non-conforming quadratic and Overhauser elements, respectively, Thus
the ratios of the formation time for the three types of elements are /.5:4.1 for a fixed number of
elements or 2.67:1: 11 for a fixed number of nodes. Test results show that these estimates for the
formation time hold. The second estimate (for a fixed number of nodes) is not in favor of the
Owerhavser elements. However, one need not use the same number of nodes for the Overhaunser
clements o achieve a given accuracy, as shown by the numerical examples, and perhaps one
needs only half the number of nodes compared to the quadratic elemenis. Therefore, the solution
time for the Overhauser elements will be much less. For problems of a moderate size (about a
few hundred nodes), the solution time will be longer than the formation time. Thuos total mnning
lime will be in favor of the Overhauser elements and this is even more obvious for larger size
problems.

Mesh generation of the Overhauser elements is not as easy as those of the quadratic elements
because of the relatively complicated connectivity of the Overhauser elements. To apply the
Overhauser elements o real engineering problems, special software for mesh generation will be
needed.
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