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A B S T R A C T   

A novel damage identification approach based on a model-driven and a data-driven combined algorithm is 
developed. By using this approach with only boundary strains, the existence, location, classification as well as the 
extent of the damage in a plate can be predicted at once with high accuracy and efficiency. To accumulate the 
data, the boundary element method (BEM) is applied as a model-driven in modeling plates with one or multiple 
damages in the forms of circular or elliptical holes or cracks and for solving the boundary strains of the defective 
plates. The dimensionality reduction and semi-analytical characteristics of BEM not only can compress the 
feature data also can improve the accuracy of the database for the data-driven algorithm. The boundary strains 
are obtained directly from BEM models, which are also easily collected through the use of strain gauges mounted 
on the surfaces of structures being monitored in real applications. A series connection neural network algorithm 
is established to accomplish the novel damage identification assignments with deep learning. The number of the 
existing damages is firstly detected by a classification neural network model, then the extracted features are 
transmitted to the corresponding regression neural network model to prognosis the location, classification as well 
as the extent of each flaw. A high accuracy of about 99.86 % is achieved by the present combined neural network 
algorithm, which is promising in applications of actual structural health monitoring.   

1. Introduction 

Structural health monitoring (SHM) has become an important tech
nique in the field of disaster prevention and mitigation for civil, aero
space, and mechanical engineering (Figueiredo et al., 2011). A five-step 
hierarchy is typically considered in SHM: First, identification of the 
damage existence; Second, detection of the damage location; Third, 
distinguishing of the damage classification; Fourth, recognition of the 
damage extent; And last, prediction of the remaining life of the structure 
(Malekloo et al., 2022). Among them, the first four steps belong to the 
category of damage identification. Thus, damage identification is the 
key technique in SHM. In the past, identifying damage was only based on 
a periodic inspection either carried out using non-destructive evaluation 
(NDE) or by visual observation. Nowadays, offline damage identification 
has been replaced with near real-time and online damage assessment. In 
recent two decades, damage identification has been performed mainly 
based on two independent approaches: model-based and data-based 
(Farrar and Worden, 2007). 

The model-based approaches are rooted in techniques based on finite 

element (FE) model updating (Sohn et al., 2003). These techniques aim 
at identifying structural damage by comparing the measured response of 
the structure with a baseline FE model, tailored for that specific struc
ture and validated against its undamaged behavior (Cao et al., 2018) 
(Wang et al., 2020). Considerable uncertainty is inherent to FE model 
updating including both the random occurrences associated with 
experimental readings of the structural response and the uncertainties 
associated with the FE discretization (Moore et al., 2012). These un
certainties shift the model-based SHM from deterministic to probabi
listic. Furthermore, the model-based approaches cannot achieve the 
five-step hierarchy damage identification (Kassab et al., 1994). Dam
age identification is an inverse problem in mechanics. These inverse 
problems are complicated because of the difficulty of the measured 
conditions, the ill-posed equations, the complexity of the solution pro
cesses, and the unusual nature of the inverse problem, which make it 
more difficult to calculate the relevant physical quantities by numerical 
methods. Except for the FEM, the boundary element method (BEM) 
(Yang et al., 2015) (Liu, 2009) and extended finite element method 
(XFEM) (Jung and Taciroglu, 2014) also have been applied to deal with 
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some damage identification work (Mellings and Aliabadi, 1993) (Sun 
et al., 2016), but their efficiency is restricted by some limitations. 

Conversely, approaches based on data models with machine learning 
algorithms (MLAs) are developed quickly to separate changes in the 
damage-sensitive features caused by structural damage (Zhang, 2007) 
(Yang et al., 2023). Several MLAs with different working principles have 
been proposed in the last two decades (Sun et al., 2020)- (Bolandi et al., 
2022). They can probably be divided into two categories. The first kind 
is supervised learning algorithms including Decision Tree (DT) (Mar
iniello et al., 2020), Random Forest (RF) (Lu et al., 2020), Support 
Vector Machine (SVM) (Bigoni and Hesthaven, 2020), k-nearest 

Neighbor (Salehi et al., 2019) and Bayesian (Lee and Song, 2016); The 
other is based on unsupervised learning algorithms including K-means 
(Alamdari et al., 2017), Association analysis (Jin et al., 2019) and Blind 
Source Separation (BSS) (Yang et al., 2017). Last but not least is Neural 
Network (NN), which is considered as a supervised or unsupervised 
learning approach (Fang et al., 2005). NN approaches in damage 
detection are similar to the working components in a human brain. It has 
been widely used in earlier works (Hekmati Athar et al., 2020) (Jagtap 
et al., 2020). Among these data-driven approaches, the first step of the 
damage identification hierarchy can be achieved by virtually every ML 
technique. The second and the fourth steps are also considered in most of 

Fig. 1. A plate subjected a remote tensile stress with a center circular hole.  

Table 1 
Verification of the stresses of the four points on the circular hole.  

Point σx σy τxy σE(BEM) σE(Exact) Error (%) 

1 0.0000 2.0142 0.0000 2.0142 2.0 0.71 
2 2.0050 0.0000 0.0000 2.0050 2.0 0.25 
3 0.0000 2.0142 0.0000 2.0142 2.0 0.71 
4 2.0050 0.0000 0.0000 2.0050 2.0 0.25  

Fig. 2. Stress contour plots of Case 1: (a) σx and (b) σy.  

Fig. 3. A plate subjected to a remote tensile stress with a center elliptical hole.  

Table 2 
Verification of the stresses of the four points on the elliptical hole.  

Node σx σy τxy σE(BEM) σE(Exact) Error(%) 

1 0.0000 4.0250 0.0000 4.0250 4.0 0.63 
2 0.9918 0.0000 0.0000 0.9918 1.0 0.82 
3 0.0000 4.0252 0.0000 4.0252 4.0 0.63 
4 0.9918 0.0000 0.0000 0.9918 1.0 0.82  
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the applications. However, many works did not either take into account 
the third and the fifth steps or believed that the algorithms were not 
suitable or capable for damage classification and prognosis. Only the 
algorithm of neural network can achieve all the five levels. Nevertheless, 
in the future, a more in-depth assessment of damage classification 
should be studied. 

For the data-driven based method, a generalizability, fairness and 
scientific validity dataset is one of the essential prerequisites. However, 
the dataset is hardly collected totally from the operational engineering 
systems or experiments due to the long cycles and high costs. Most en
gineering structures, such as bridges, aircraft, wind turbines, are systems 

dictated by the size and physical environment in which they are put in 
service, which challenges the existence of data from all operational and 
environmental conditions. In addition, due to the one-of-a-kind nature 
of such structures, it is more difficult to incorporate lessons learned from 
other normal response patterns throughout their service lifetime. 
Therefore, a hybrid damage identification approach aimed at combining 
the best features of model- and data-based algorithms have emerged (Li 
and Yang, 2008) (Gonzalez and Zapico, 2008). In the hybrid algorithm, 
the FE model is seen not only as an instrument for exploring the possible 
causes of past changes in the structural response, but also as a tool for 
designing an optimal SHM sensor network and a data-base creator to 
construct the training data for data-based damage-detection algorithms 
(Mitusch et al., 2021). Although the FE models have been shown to hold 
considerable potential for optimizing small sensing networks, the 
number of runs required for a large-scale structure is most often pro
hibitive (Ku et al., 2023). 

Compared with the FE model, the boundary element (BE) model only 
needs to have the structure boundaries divided into elements, reducing 
the dimension of the considered model by one. This will directly lead to 
reduce the number of feature data in sensing networks to a great extent. 

Fig. 4. Stress contour plots of Case 2: (a) σx and (b) σy.  

Fig. 5. A plate subjected to a remote tensile stress with a center crack.  

Fig. 6. Stress contour plots of Case 3 (a) σx, (b) σy  

Table 3 
Verification of the stresses of the one to four points on the crack.  

Node σx σy τxy σE(BEM) σE(Exact) Error (%) 

1 0.0000 40.4491 0.0000 40.4491 40.0 1.12 
2 0.1009 0.0000 0.0000 0.1009 0.1 0.90 
3 0.0000 40.4491 0.0000 40.4491 40.0 1.12 
4 0.1009 0.0000 0.0000 0.1009 0.1 0.90  

Table 4 
Verification of the stresses and displacements of five and six points on the crack.  

Node x/mm y/mm σx(BEM) σx(Exact) Error σx(%) v(BEM) v(Exact) Error_v (%) 

5 25.9923 15.9913 3.4146 3.4227 0.24 − 0.2440 − 0.2473 1.33 
6 25.9923 16.0087 3.4164 3.4227 0.18 0.2438 0.2473 1.42  
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The semi-analytical characteristic of the BE model can obtain a higher 
accuracy numerical result, which can ensure the quality of data used to 
optimize the sensing networks. Thus, the conjunction of the BE model 
with NN to implement the damage identification of structures will be a 
more efficient strategy (Sun et al., 2022), and its feasibility has been 
verified by the authors (Han et al., 2022). In our approach, the BEM is 
applied in modeling the defective structures and in solving the boundary 
strains. Numerous BEM models and results are composed to form the 
database for machine learning, which is similar to the collected data 
through the use of strain gauges mounted on the surfaces of structures 
being monitored in real applications. Compared with the previous paper 
where the developed algorithm can only identify the location and extent 
of one circular hole (Han et al., 2022). A more general algorithm is 
developed in this work to implement the four-step hierarchy damage 
identifications. Multiple damages with more complicated forms are 
considered in the BEM. The single regression NN model has been 

replaced by a series connection NN model which is composed of clas
sification and regression NNs. A complete four-step hierarchy damage 
identification for plates with one or multiple damages in the forms of 
circular or elliptical holes, or cracks can be predicted accurately by the 
developed algorithm. 

The paper is organized as follows. The methodologies of BEM used in 
model-driven and a serious neural network used in data-driven are 
presented in a great detail in section 2. Six examples are investigated in 
Section 3 to demonstrate the accuracy, efficiency and generality of the 
present NN models. Last Section 4 concludes the advantages and some 
defects of the present method. 

2. Methodology 

A coupled approach of the BE model-driven and NN data-driven al
gorithm can work together to achieve a reasonable level of accuracy in 
damage identification. Augmentation of data-driven damage identifi
cation systems with the BEM can generate labeled datasets for training 
validation and testing phases. Data compression by means of dimen
sionality reduction is one of the important stages and is achieved using 
the BEM. The reduction in the quantity of data set does not reduce the 
data quality due to the semi-analytical nature of the BEM. Then, a series 
connection NN model is developed to construct the exact mapping 
relationship between deformation and configuration of the structure to 
accurately predict the damage detection, location, classification and 
extent. 

2.1. Database construction by using the boundary element models 

In this analysis, the 2D elastostatic BEM (accelerated by the fast 
multipole method (Liu, 2009)) is applied to solve the problem of a plate 
with flaws subjected to remote stress loading. The considered domain of 
the plate is Ω ∈ R2 with boundary S and unit outward normal n. The 
equilibrium equations and stress-strain relations are given by: 

σij,j = 0 (1) 

Fig. 7. Displacement contour plots of Case 3 (a) ux, (b) uy  

Fig. 8. The configuration of the DNN.  

Fig. 9. The training process of DNN model.  
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εij =
1
E
[
(1+ ν)σij − νσkkδij

]
(2)  

respectively, in which σij and εij are the stress and strain tensors, δij is the 
Kronecker delta symbol, E is the Young’s modulus and ν is the Poisson’s 
ratio of the material. In elastostatic problems, the above equations need 
to be solved under given boundary constraints and load conditions. By 
applying the generalized Green’s identity and Gauss divergence theo
rem, the boundary integral equation (BIE) (Liu, 2009) can be established 
as follows: 

cijui(x)=
∫

S

[
Uij(x, y)tj(y) − Tij(x, y)uj(y)

]
dS(y), ∀x ∈ S (3)  

which can be applied to solve for the unknown boundary values of 
displacements and tractions using the BEM. In BIE (3), Uij and Tij are two 
kernel functions from the Kelvin’s solution (Liu, 2009), and cij is a co
efficient related to the shape of the boundary at point x (cij = 1/2 for a 
smooth boundary at x). 

By discretizing the boundaries of the domain with constant elements, 
BIE (3) leads to the following linear system of equations: 

Fig. 10. Images of activation functions (a) ReLU, (b) Softmax.  

Fig. 11. Flowchart of the present algorithm.  
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Hu=Gt (4)  

where u and t are the displacement and traction vectors, respectively, H 
and G are the associated matrices from integration of the kernel func
tions on all elements. Substituting the boundary conditions into the 
linear system of equations, the unknown displacements u and tractions t 

can be solved by rearranging the unknowns to left-hand-side of the 
equations, leading to a standard linear system of equations: 

Ax= b (5) 

Once the values of all boundary displacement and traction are 
known, the values of the full stresses and strains on the boundary of the 
domain can be obtained through the following linear system of equa
tions (Liu, 2009): 

Fig. 12. Two random circular holes in a plate subjected to remote stress.  

Table 5 
NN parameters for example one.  

Hidden 
layer 
number 

Number of 
neurons 

Parameters to 
be trained 

Iterative 
steps 

Loss 
value/ 
cm 

Training 
time/s 

3 64-64-32 83814 300 0.03087 37  

Fig. 13. Loss value results of example one NN model (a) convergence process, (b) distribution of testing samples.  

Fig. 14. Comparison between the true and prediction values for two circular holes.  

Fig. 15. Two random elliptical holes in a plate subjected to remote stress.  

Table 6 
NN parameters for example two.  

Hidden 
layer 
number 

Number of 
neurons 

Parameters to 
be trained 

Iterative 
steps 

Loss 
value 

Training 
time/s 

3 128-64-32 165418 300 0.0076 70  
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(6)  

in which, constant C = E/[(1+ν)(1 − 2ν)] and G is the shear modulus. 
The accuracy in prediction of the coupled system depends on the 

accuracy of the data generated using the BEM models. Thus, the accu
racy of the BEM models should be verified first. In this section, three 
benchmark examples are investigated to verify the accuracy of the BEM 
models. A plate subjected a remote tensile stress on the four edges and 
with a center flaw in the form of a circular, elliptical hole or a crack is 
analyzed by using the BEM models. The effective von-Mises stress for 
this plane stress problem is expressed as: 

σE =
1̅
̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
σx − σy

)2
+ σx

2 + σy
2 + 6τxy

2
√

(7) 

The rectangular plate considered has a length of 48 mm and a width 
of 32 mm, and is subjected to a tensile loading σ = 1 Pa along the four 
edges. In all cases, the material properties of the plate used are: Young’s 
modulus E = 1Pa, Passion’s ratio ν = 0.3. 

Case 1. A plate with a circular hole 
A circular hole with radius 1 mm in the center of the studied plate is 

plotted in Fig. 1. The analytical values of the stresses of the points on the 
edge of the circular hole as shown in Fig. 1 are given by (Xu, 2016): 

σ1,2,3,4 = 2σ (8) 

By conducting the convergence study, it is found that 604 and 100 
constant elements are needed to discretize the four edges of the plate 
and the edge of the circular hole, respectively, in order to ensure the 
accuracy of the BEM results. Four points on the circular hole as shown in 
Fig. 1 are taken as the samples to carry out the verification. The errors 

Fig. 16. Loss value results of example two NN model (a) convergence process, (b) distribution of testing samples.  

Fig. 17. Comparison between the true and prediction values for two elliptical holes.  

Fig. 18. Two random cracks in a plate subjectetoon remote stress.  

Table 7 
NN parameters for example three.  

Hidden 
layer 
number 

Number of 
neurons 

Parameters to 
be trained 

Iterative 
steps 

Loss 
value 

Training 
time/s 

3 128-64-32 165352 300 0.0078 58  
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between the BEM solution and the analytical solution at these four 
points are listed in Table 1. The developed BEM model is proved to be 
very accurate, with the relative errors being less than 1 %. The corre
sponding stress contour plots of the BEM model are depicted in Fig. 2. 

Case 2. A plate with an elliptical hole 
An elliptical hole in the center of the studied plate is plotted in Fig. 3. 

The semi-long and short axes of the elliptical are a = 2mm and b = 1mm, 
respectively. The angle θ between the long axis and x-axis is 0. The same 
as in Case 1, 604 and 100 uniformly distributed constant elements are 
used on the four edges of the plate and the edge of the elliptical hole, 
respectively. Four points on the elliptical hole as shown in Fig. 3 are 
taken as the samples to carry out the verification. The analytical solution 
of stresses at the four points on the elliptical hole are given by (Xu, 
2016): 
⎧
⎪⎪⎨

⎪⎪⎩

σ1,3 =
2a
b

σ,

σ2,4 =
2b
a

σ.
(9) 

The errors between the BEM and the analytical solution are listed in 
Table 2. The developed BEM is proved exactly by the relatively small 
errors. The corresponding stress contour plots of the BEM are depicted in 
Fig. 4. 

Case 3. A plate with a crack 
When the short axis approaches to 0, the elliptical hole changes to be 

a crack with aggravated stress concentration at the crack tip. The same 
meshes are used to discretize the structure as depicted in Figs. 5 and 6 
points are sampled to verify the accuracy of the model. The numerical 
results of 1–4 points are still compared with the analytical solutions of 
Eq. (8). The stresses and displacements of two auxiliary points 5 and 6 
are verified by the analytical solution given by (Xu, 2016): 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σx =
KІ
̅̅̅̅̅̅̅
2πr

√ cos
θ
2

(

1 − sin
θ
2

sin
3θ
2

)

v =
KІ

G(1 + μ)

̅̅̅̅̅
r

2π

√

sin
θ
2

[

2 − (1 + μ)cos2θ
2

] (10) 

The comparisons between numerical results and analytical solutions 
are shown in Tables 3 and 4 which prove the high accuracy of the BE 
model. The contour plots of stress and displacement of this case are 
plotted in Figs. 6 and 7, respectively. 

Fig. 19. Loss value results of example three NN model (a) convergence process, (b) distribution of testing samples.  

Fig. 20. Comparison between the true and prediction values for two cracks.  

Fig. 21. Three random flaws in a plate subjected to remote stress.  

Table 8 
NN parameters for example four.  

Hidden 
layer 
number 

Number of 
neurons 

Parameters to 
be trained 

Iterative 
steps 

Loss 
value 

Training 
time/s 

4 256-128- 
64-32 

353231 300 0.0084 84  
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2.2. A series connection NN model 

In this analysis, a series connection artificial neural network (ANN) 
composed of classification and regression models is developed and 
constructed to achieve the damage identification. Deep neuron network 
(DNN) is one kind of ANN. It’s a multi-layer structure with multiple 
labeled and feature data as well as hidden layers to enhance the 
expression ability of the model as expressed in Fig. 8. 

The architecture of the classification and regression model is the 
same. Suppose there are totally l hidden layers in the DNN model. As a 
demonstration, the operation is nth layer, n = 1, 2, …, l. The input and 
output of the layer are denoted by h[n− 1] and h[n], respectively. 
Boundary strains ε can be regarded as h[0]. The output data is produced 
according to the equation as: 

h[n]
j = σ

(
∑

k
w[n]

jk h[n− 1]
k + b[n]

)

, j= 1, 2, ...,D[n], and k= 1, 2, ...,D[n− 1] (11)  

where D[n] and D[n− 1] are the number neurons of n and n-1 layer, 
respectively. w and b are the weight and bias parameters at the neuronal 
connections between adjacent layers which are the key problem to be 
determined in DNN models. The back propagation algorithm used in this 
model to effectively update the parameters to improve the accuracy of 
the complicated model. σ (⋅) is a non-linear function called the activation 
function. The training flow chart for DNN is shown in Fig. 9. 

In this article, 2-D elastostatic problems are considered, the input is a 
1-D array containing the boundary strains of points on the sensing 
network which can be obtained from a set of boundary strain gauges or 
numerical analysis. The output is the predicted feature data including 
damage number, location, geometry characteristics and classification. 

2.2.1. The NN classification model 
Classification NN model is one of the supervised machine learning 

algorithms. Its purpose is to find the decision boundary to make a 
qualitative analysis of the object and the output is the category to which 

Fig. 22. Loss value results of example four NN model (a) convergence process, (b) distribution of testing samples.  

Fig. 23. Comparison between the true and prediction values for three random flaws.  
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the object belongs. It can be used to deal with binary and multi-class 
classification problems. Thus, the classification NN model is employed 
to identify the number of the flaws. 

In the training process, after collecting the dataset, the next impor
tant step is data preprocessing. Normalizing the data to the appropriate 
range can effectively improve the convergence speed of the algorithm, 
and avoid the gradient disappearance or gradient dispersion. In addi

tion, it can reduce the scale differences between different features, 
making the model more stable and more robust. In this analysis, Z-Score 
normalization technique is employed to normalize the collected 
boundary strains to a range of mean 0 and variance 1. The new char
acteristics are normalized as: 

x̂i =
xi − μ

σ ,where mean μ=
1
n

∑n

i=1
xi and variance σ2 =

1
n

∑n

i=1
(xi − μ)2 (12)  

the classification model construction, the ReLU function is applied as the 
activation function for the first several layers to map the nonlinear 
relationship between neurons. About 50 % of the neurons using the 
ReLU function are activated, which is a good sparse NN, and the training 
process is more efficient. The ReLU equation and its image (Fig. 10 (a)) 
are listed below: 

ReLU(x)=max(0, x) (13) 

Softmax function is the activation function for last layer of classifi
cation NN model to output the probability of the flaw numbers. Softmax 
is a generalization of logical function, and it can compress a K-dimen
sional vector X containing any real number into another K-dimensional 
vector, the range of each element is mapped to a probability real number 
between 0 and 1, and their sum is 1. The number which states the 
highest probability is predicted to be the realistic number of the flaws. 
Its equation and image (Fig. 10 (b)) are presented. 

σ(x)i =
exi

∑K

i=1
exi

(14) 

The corresponding Cross Entropy Loss function is employed as loss 
function to measure the variability in the probability distribution. 

Loss= −
∑C− 1

i=0
yi log(pi) (15)  

where C represents the number of sample categories, yi is the one-hot 
representation of the sample labels. i.e., when the sample belongs to 
the i-th category, is, yi = 1, otherwise yi = 0. pi indicates the probability 
that the sample is in class i. 

In the back propagation algorithm, the final loss value back
propagates from the last layer to the front layer, and calculates the de
rivatives of the weights and bias in the network. The optimization 
process of NN is essentially the process of updating the weight and bias 
so as to minimize the objective function Q(w). Assuming that n samples 
exist, the objective function can be written in the following form: 

Q(w)=
1
n

∑n

i=1
Qi(w) (16)  

In this process, the Adam is employed to optimize the NN parameters. Its 
equation is: 

m :=
β1m + (1 − β1)∇Q̂(w)

1 − β1
,∇Q̂(w) =

1
m

∑m

i=1
∇Qi(w)，

v :=
β2v + (1 − β2)∇Q̂(w)

1 − β2
，

w := w − η m
̅̅̅
v

√
+ κ

，

(17)  

where m is the number of random samples, where mini-batch size is 32. η 
represents learning rate. β1 and β2 are momentum parameters to make 
the algorithm more stable. κ generally takes a very small positive 
number. In the training process, small batch can effectively reduce 
computation time and memory consumption, and can reach conver
gence faster, make the model more stable. In addition, it can effectively 
avoid the local optimal solution, due to randomly selected each small 

Fig. 24. Configuration of the series connection NN models for example five.  

Table 9 
NN parameters for example five.  

Hidden 
layer 
number 

Number 
of 
neurons 

Parameters to 
be trained 

Iterative 
steps 

Accuracy 
rate 

Training 
time/s 

3 32-32-16 40374 100 0.9967 49  
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batch can explore more parameter space. 
Last but not least, for the reason of the complex model and the 

relatively small dataset, during training a DNN, it is easy to overfit the 
noise and randomness of the training data to form an overfitting model. 
Network regularization can reduce the complexity of the model by 
limiting the model parameters to reduce the risk of overfitting. Dropout 
is one kind of regularization techniques by randomly deleting some 

neurons with a certain probability, the dependence between neurons 
can be reduced, thus reducing the risk of overfitting. In this study, the 
randomly discarded proportion is set to 30 % when the constructed 
network structure is above 3 hidden layers and the number of single- 
layer neurons is large. 

Fig. 25. Convergence processes of example five NN model (a) accuracy, (b) loss value.  

Fig. 26. Convergence processes of example five NN model with flaw number of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6.  
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2.2.2. The NN regression model 
Regression NN model is also one of the supervised machine learning 

algorithms. Its purpose is to find the optimal fitting value to approach 
the real value to make a quantitative analysis of object. After deter
mining the number of flaws, the NN regression model is applied to 
predict the detailed location and geometric characteristics for each flaw. 

In regression model, ReLU function is applied as the activation 
function for all of the layers to map the nonlinear relationship between 
neurons. To measure the deviation between the prediction value and the 
true value, the Mean Absolute Error (MAE) is adopted as the loss func
tion. It will be more robust in the presence of outliers. 

MAE =
1
N
∑N

i=1
|yiTrue − yiPred | (18)  

where yiTrue、 yiPred represent the true and prediction value for i-th data, 
respectively. The same as classification model, mini-batch size is 32. 
Adam optimizer is employed to optimize the NN parameters. Dropout 
regularization is used to reduce the risk of overfitting. Z-Score normal
ization technique is employed to normalize the collected boundary 
strains to a range of mean 0 and variance 1. 

One thing needs to be noticed that, the output of the regression 
model includes the Cartesian coordinates of center, radius or axis length, 

and the angles. They belong to different dimensions. A normalization 
step is necessary to be used to deal with the feature data to improve the 
convergence speed. Max-Min Normalization is employed to scale the 
feature data to [0, 1] or [− 1, 1] interval. The other values are mapped to 
the corresponding interval through linear transformation by 

x̂i =
xi − xmin

xmax − xmin
(19) 

After obtaining the predicted feature data, a back normalization 
technique is used to recover their corresponding realistic values. 

The flowchart of the present algorithm is depicted in Fig. 11. 

3. Numerical examples 

In this analysis, several examples of a plate with random damages in 
the form of circular, elliptical holes and cracks are considered. For the 
sake of computation, the geometry, material properties, boundary and 
loading conditions as well as mesh distributions of the plate and flaws 
are consistent with the verification examples. 

3.1. A plate with two circular holes 

Location and extent functionalities of the present damage detection 

Fig. 27. Loss value range of testing samples for example five with flaw number of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6.  
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algorithm are first evaluated. A plate subjected to remote stress having 
two circular holes with different radii, as shown in Fig. 12, is proposed. 
A total number of 604 constant elements are employed to discretize the 
edges of the plate and each edge of the flaws is discretized into 100 
constant elements. For this example, the strains at each boundary node 
of the plate are the input while the center coordinates and radius of these 
two circular holes are exported. 

Data are collected by moving the center of the circular hole along x 
and y axes inside the range of the plate, and the radius of each circular 
flaw varies from 1.0 to 2.5 mm. By random combining these parameters, 
a highly qualified dataset with a total of 5625 samples is established, in 
which a large number of repetitive data sets is avoided to prevent the 
occurrence of non-unique results, as well as overlapping flaws are also 
forbidden. With randomly shuffled the samples, 3937 samples account 
for 70 % are used for training the network, and the left 30 % samples are 
employed for testing. Among of several optimal NN models, a 64-64-32 
configuration is confirmed to be the optimized model and the detail 
parameters of this model are listed in Table 5. 

The convergence process of loss value can be found in Fig. 13 (a). 
After 100 epochs, the loss value tends to be a constant until achieves 
0.03 cm at the end. Thus, the model is considered to have good gener
alization ability and can be used for testing. A total of 1688 samples have 
been tested by the proposed model, over 90 % of samples have a relative 
error less than 0.05 %. The range of the relative error distribution of the 
testing samples are tabulated in Fig. 13 (b). 

Three random prediction results of testing samples are plotted in 
Fig. 14 which are compared with the true flaws. High degree of con
sistency between the predictions and true values demonstrates the ef
ficiency of the proposed algorithm. 

3.2. Two random elliptical holes in a plate 

The classification ability of the present algorithm is verified by 
through prognosis different shape flaws in a plate. First, the plate with 

two elliptical flaws having different long, short axes and angles between 
the long axis and longitudinal direction is plotted in Fig. 15 and 
investigated. 

Data is collected by moving the coordinates of each flaw center along 
x and y axes inside the range of the plate. The lengths of semi-long and 
short axes vary in the range of 2.0 mm–4.0 mm and 1.0 mm–2.0 mm, 
respectively. Meanwhile, the angle between x-axis and long axis varies 
from 0 to 180◦. By randomly combing these parameters, a total number 
of 6100 date sets are collected without date duplicating and flaws 
overlapping. A regression NN construction with three hidden layers is 
applied to predict the elliptical flaws, the detail parameters are listed in 
Table 6. The input data is still the boundary strains of the plate. One 
should be noted that the output neurons have non-homogeneous 
dimensionally which include length and angle. Thus, the predicted 
values are first normalized by the max-min normalization and linearly 
transformed into the scale between (0, 1). Then, a reverse normalization 
step is employed to return the realized values to the output neurons. 

The model converges quickly as shown in Fig. 16 (a), after 100 
epochs, the loss value finally achieves 0.0076. The statistics of relative 
error for the testing samples are tabulated in Fig. 16 (b) which presents 
the high generality of the model. The predictions of location, classifi
cation, extent of two elliptical holes in a plate are matched well with that 
of the true flaws and depicted in Fig. 17. 

3.3. Two random cracks in a plate 

With the length of short axis getting over to 1/10 of the long axis 
length, an elliptical flaw becomes to be a crack which is a ubiquitous 
form of the defect existence. Thus, cracks with different lengths and 
angles between length and longitudinal direction in a plate are also 
studied and depicted in Fig. 18. 

Data is collected by moving the coordinates of center point of the 
cracks along x and y axes inside the range of the plate. Vary the crack 
lengths from 2.0 mm to 4.0 mm as well as the angles between crack and 

Fig. 28. Comparison between the true and prediction values for the circular holes with random number.  
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the x-axis from 0 to 180◦. A total number of 5000 datasets is built 
without duplicated data and overlap flaws. The same strategy algorithm 
as elliptical flaw is employed. An optimal NN structure with four hidden 
layers is constructed and the detailed parameters are listed in Table 7. 

Fig. 19 (a) shows the convergence process of this model, after 150 
epochs, the loss value converges to 0.0078. The statistics of relative error 
for the testing samples in Fig. 19 (b) and the comparison between the 
predictions and true flaws in Fig. 20 all illustrate the high prediction 
ability of the present algorithm. 

3.4. Three random flaws in a plate 

A plate with three flaws in the form of circular, elliptical holes and 

cracks as shown in Fig. 21 is investigated by the present algorithm. 
The same loading condition is subjected on the plate. By randomly 

combing the parameters for each flaw, a dataset with a total number of 
5292 is collected which avoids the duplicated data and overlap flaws. 
The output neurons include the location of the flaw center, the radius or 
the long, short axes and angles for each flaw. 70 % of the data are used 
for training. Finally, an optimal NN model with four hidden layers is 
constructed and the detailed parameters are shown in Table 8. 

From the convergency figure (Fig. 22 (a)) it can be observed that 
after 200 steps, the loss values tend to converge and finally achieve 
0.0084. Thus, this mode is believed to possess good generalization and 
can be applied to predict the flaws. The relative error of total 1847 
testing samples are counted and tabulated in Fig. 22 (b). Over 90 % of 
samples achieve a relative value of less than 3 %. The comparisons be
tween prediction results and true flaws of nine random samples are 
described in Fig. 23. The high consistency illustrates the developed al
gorithm has high efficiency in localization, classification and description 
of damage detection. 

Fig. 29. Configuration of the series connection NN models for example six.  

Table 10 
NN parameters for example six.  

Hidden 
layer 
number 

Number 
of 
neurons 

Parameters to 
be trained 

Iterative 
steps 

Accuracy 
rate 

Training 
time/s 

2 64–32 79588 100 0.9986 45  
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3.5. A plate with unknow number of circular holes 

For determining the number of flaws, a series connection neural 
network is constructed and its configuration is plotted in Fig. 24. At 
First, a classification NN configuration is built to analyze the number of 
flaws, where the output neuron has only one. After making sure the 
number of flaws, an indicator points to the corresponding regression NN 
model and transmits the extracted features to prognosis the detailed 
location, classification and extent of the flaws, where the number of 
output neurons for each regression NN model is different. A plate with 
unknown number of circular holes is predicted to demonstrate the al
gorithm. By combing the number and the characteristic parameters of 
circular holes, an abundant dataset with a total number of 24204 is 
produced. The dataset is comprised of six groups’ data with different 
number of flaws from one to six. After random shuffled the data, 80 % 
among of them are used for training the model and 20 % residue are used 
for testing. 

A classification NN with three hidden layers is constructed and the 
detailed information is listed in Table 9. Softmax is chosen as the acti
vation function for the output layer to predict the probability of 
numbers. The number with the highest value of probability is selected as 
the number of flaws, while, the Cross Entropy loss is employed to value 
the accuracy. After determining the number of the circular holes, the 
number as an indicator points to the corresponding regression NN model 
and the next process of detailed prediction for each flaw is the same as 
before and omitted here. 

At the first step for flaw number prognosis, the convergence pro
cesses of accuracy and loss value are shown in Fig. 25. After 20 epochs, 
the model begins to converge and finally achieves 99.67 % precision. 
Thus, the model is believed with high generality to predict the number 
as well as the detailed information of studied flaws. 

The convergency processes of loss value for the sequential regressive 
NN models are depicted in Fig. 26. In which, figures (a)–(f) represent the 
regressive NN model for predicting the flaw numbers from 1 to 6, 

Fig. 30. Convergence processes of NN model for example six (a) accuracy, (b) loss value.  

Fig. 31. Convergence processes of example six NN model with flaw number of (a) 1, (b) 2, (c) 3, (d) 4.  
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respectively. Their corresponding relative errors for the testing samples 
are also plotted in Fig. 27, respectively. Based on the results, over 95 % 
samples have the relative errors below 5 % in the damage detection. 

The predicted geometry information for random number of circular 
holes is compared with the true one. Nine random testing samples are 
plotted in Fig. 28. It can be concluded that the series connection NN 

Fig. 32. Loss value range of testing samples for example six with flaw number of (a) 1, (b) 2, (c) 3, (d) 4.  

Fig. 33. Comparison between the true and prediction values for the flaws with random number.  
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algorithm owns high accuracy to prognosis the number, location and 
extent of the circular holes. 

3.6. A plate with random number and type flaws 

At last, a finally series connection NN model to prognosis the num
ber, location, classification, extent of the flaws is developed. Its effi
ciency is demonstrated by the example of a plate with random number 
and flaws in the form of circular, elliptical holes and cracks. The loading 
condition and material properties of the plate are considered the same as 
in previous cases. By randomly combing the characteristic parameters of 
the flaws, a total number of 20562 datasets including the number of 
flaws from one to four is collected. After random shuffled the samples, 
80 % of them are used for training and the left are used for testing. 

The configuration of the series connected NN model is described in 
Fig. 29. Similarly, the target of the first classification NN model is to 
determine the exact number of the flaws. Then, an indicator transforms 
the extracted features into a corresponding regression NN model to 
predict the detailed characteristics of the flaws. A two hidden layer 
classification NN model is constructed. Softmax function is adopted as 
the activate function for the output neurons to determine the number 
probability. Cross Entropy is employed as the loss function. The strategy 
of the regression NN model is similar to the previous one and omitted 
here. 

For the first classification NN model, the detailed parameters are 
listed in Table 10. The accuracy and convergence process versus epoch 
are plotted in Fig. 30. After 20 epochs, the model tends to converge, and 
the testing accuracy can achieve 99.86 %. 

The convergence process of loss value for the sequential regression 
NN models for predicting the flaws number from one to four are depicted 
in Fig. 31 respectively. The loss value distributions of the testing samples 
are tabulated in Fig. 32. The loss values of 85 % samples are within 0.03. 
The predicted results of nine random samples are compared with that of 
true flaws and presented in Fig. 33. It can be concluded that the number, 
location, classification, extent of the flaws can be predicted accurately 
by the developed algorithm. 

4. Conclusions 

A novel damage identification approach based on the BE model- 
driven and NN data-driven combined algorithm is developed in this 
paper. By using only boundary strains of the considered structure, the 
existence, location, classification as well as the extent of the damage can 
be predicted at once with high accuracy and efficiency. 

One important aspect of the high accuracy and efficiency is due to a 
high-quality dataset with generalizability, fairness and scientific validity 
which created by a model-driven algorithm. In this approach, BEM is 
taken as the tool for designing an optimal SHM sensor network and a 
data-base creator to construct the training dataset. Data compression is 
one of the important stages to decrease the label number and is imple
mented by using the BEM with its dimensionality reduction character
istic. The reduction in the quantity of dataset does not reduce the data 
quality due to the semi-analytical nature of the BEM. By randomly 
combing the parameters of the damage, large dataset is constructed by 
using the BEM simulation for which only the boundary strains are 
needed. This data can also be collected from the experimental data by 
using strain gauges on the boundary. 

Then, a series connection NN model is developed to construct the 
exact mapping relationship between deformation and configuration of 
the structure. Six different kinds of examples demonstrate the high ef
ficiency and accuracy of the present method to predict the damage 
number, location, classification and extent. A high accuracy of about 
99.86 % is achieved by the present combined neural network algorithm, 
which is promising in applications of the actual structural health 
monitoring. 
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