Engineering Analysis with Boundary Elements 172 (2025) 106133

Contents lists available at ScienceDirect

Engineering Analysis with Boundary Elements

journal homepage: www.elsevier.com/locate/enganabound

ELSEVIER

Check for

A fast bond-based peridynamic program based on GPU parallel computing |

Yang Yang® ®, Zixin Su”, Yijun Liu"

Faculty of Material Science, Shenzhen MSU-BIT University, Guangdong
® Department of Mechanics and Aerospace, Southern University of Science and Technology, Guangdong

ARTICLE INFO ABSTRACT

Key words:

Bond-based peridynamic

GPU parallel

CUDA programming technology

Peridynamic is an effective method for addressing fracture problems. However, the non-local theory makes it
time-consuming. Although some techniques have been developed to improve computational efficiency, the ac-
celeration effect remains relatively limited. This paper introduces a parallel algorithm for bond-based peridy-
namic using the GPU parallel CUDA programming technology. The calculation process is divided into functions
with material points and bonds as the smallest calculation units. The loop of material points and bonds is
changed to the index to achieve parallelism. A general horizon generation module is established to optimize
storage. Additionally, a general register technique is proposed for high-speed access register memory to reduce
global memory access. This technique not only eliminates the restriction on the number of horizon points, also
suitable for nonuniform distribution of material points. Compared to serial and OpenMP parallel programs, the
present algorithm can achieve up to 800-fold and 100-fold acceleration, respectively. In a typical simulation of
one million particles, executing 4000 iterations can be completed in 5 minutes for single precision and 20 mi-

nutes for double precision on a low-end GPU PC.

1. Introduction

Peridynamic (PD) [1] is a non-local theoretical framework. This
theory solves the problem of modeling discontinuous space by intro-
ducing integral based governing equations. This approach makes it more
useful for modeling crack propagation without altering the mesh. In the
implementation, the domain needs to be discretized into a series of
material points, each containing information about position, volume,
and density. The time complexity of PD is O(PN), where P is the total
number of material points and N is the number of horizon points for each
material point. To ensure the stability and accuracy of numerical com-
putations, a small incremental step must be set, which leads to a large
number of iterations requiring substantial computational resources. At
this scale, PD requires more computational effort and larger storage
space compared to classical continuum mechanics based methods, such
as finite element method (FEM) resulting in lower computational
efficiency.

In order to improve the computational efficiency of PD, researchers
have proposed a range of related methods. Initially, mathematical
optimization and algorithmic improvements are utilized to theoretically
reduce the amount of computation [2,3]. Jafarzadeh and colleagues [4]
employed convolution and Fast Fourier Transform to decrease the

* Corresponding author.
E-mail address: yangy2023@smbu.edu.cn (Y. Yang).

https://doi.org/10.1016/j.enganabound.2025.106133

problem complexity from O(MN) to O(NlogN) [5], and applied this
method in MATLAB to create a peridynamic analysis program named
PeriFast [6]. Tao Ni et al. [7] proposed an ordinary state based peri-
dynamic (OSBPD) model based on matrix operation for a rapid solution,
effectively reducing the computation involved in common loop forms.
On the other hand, local and nonlocal coupling [8,9], as well as refined
meshing [10,11], are also effective ways to reduce the computational
load of PD. Local and nonlocal coupling [12,13] is typically achieved by
integrating PD with traditional continuous medium mechanics [14,15].
Refined meshing [16] essentially involves sparsely distributing points in
areas without cracks or damage, while densely distributing points in
areas with cracks. These methods can reduce the computational load of
PD to a certain extent, but they introduce new issues, such as the need to
know in advance the locations of cracks, damage, etc. [17,18], and the
need for manual parameter tuning, which may affect the universality of
PD. Moreover, the refined meshing method may also require the
implementation of adaptive meshing functions, increasing the difficulty
of coding. Additionally, some studies have used machine learning [19,
20] and deep learning [21,22] to accelerate the computation process of
PD, but the acceleration effect is relatively limited.

Parallel computing is an effective approach for accelerating numer-
ical computations, which is mainly divided into Central Processing Unit

Received 24 November 2024; Received in revised form 3 January 2025; Accepted 19 January 2025

Available online 29 January 2025
0955-7997/© 2025 Published by Elsevier Ltd.

https://orcid.org/0000-0002-7208-8238
https://orcid.org/0000-0002-6039-2566
https://orcid.org/0000-0002-7208-8238
https://orcid.org/0000-0002-6039-2566
mailto:yangy2023@smbu.edu.cn
www.sciencedirect.com/science/journal/09557997
https://www.elsevier.com/locate/enganabound
https://doi.org/10.1016/j.enganabound.2025.106133
https://doi.org/10.1016/j.enganabound.2025.106133
https://doi.org/10.1016/j.enganabound.2025.106133
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2025.106133&domain=pdf

Y. Yang et al.

Table 1

Functions of implementation process.

Executed times ~ BBPD BBPD with Cracks
Once Structural discretization Structural discretization
Neighborhood point Neighborhood point
generation generation
Boundary conditions Boundary conditions
Initial crack setting
Multi-times Internal forces calculation Internal forces calculation
Updating displacements Updating displacements
Crack judgement
Damage judgement

Structure
discretization

Create
neighborhood

Set boundary and
initial conditions

Set precrakes

Update
displacements

output

Compute
internal force
Damage[simulation

End Divergence?

Update failure
bonds

Fig. 1. The flowchart of BBPD.

(CPU) based parallelism and Graphic Processing Units (GPU) based
parallelism [23]. CPU parallelism is more suitable for situations with
complex logic, such as Message Passing Interface (MPI), Shared Memory

Algorithm 1
Parallel pseudocode of points based function.

Engineering Analysis with Boundary Elements 172 (2025) 106133

Parallel Programming (Open Multi-Processing), etc. On the other hand,
GPU parallelism is more suitable for situations with simple logic but
large computational volumes [24], such as Open Computing Language
(OpenCL), NVIDIA’s Compute Unified Device Architecture (CUDA), etc.
Due to the non-local nature of Peridynamics, each material point only
interacts with points within its own neighborhood, making it highly
suitable for parallelization [25].

Sun [26] developed a simple peridynamic framework on a hetero-
geneous computing platform of CPUs and GPUs using OpenMP and
CUDA, respectively. Liu et al. [27] implemented the parallelization of
PD on GPU with CUDA technology, achieving a speedup of 2.6 to 10.3
times compared to CPU serial program. Li et al. [28] transplanted and
optimized Peridigm on SIMT accelerators. They achieved a maximum
performance of 825.72 TFLOPS on four Nvidia Tesla V100 GPUs, which
is 10.24 times faster than the original Peridigm, and reached a maximum
scale of 36,096,000 material points. Zhong et al. [29] coupled peridy-
namics with the finite element method, proposing a parallel optimiza-
tion framework named PeriFEM. Compared to the FEM method, they
achieved similar computational rates of the same scale. Mossaiby et al.
[30] developed a high-performance PD computing model using OpenCL,
which showed a speedup of 3 to 6 times compared to the OpenMP
parallel code in 3D tests with hundreds of thousands to millions of
nodes, and expanded the maximum calculation scale to 3550,261 ma-
terial points. Boys et al. [31] developed a Python code library named
PeriPy based on bond based peridynamic (BBPD) using OpenCL. This
software achieved a scale of tens of millions of nodes on Geforce RTX
2080Ti, with a 1.4 to 2.0 times improvement over OpenCL and a 3.7 to
7.3 times improvement over OpenMP. Bartlett et al. [32] expanded the
program to state based peridyanmic (SBPD) based on PeriPy, expanded
the maximum problem scale to 300 million, and increased the speed by
63 times compared to linear programs. Wang et al. [33] used warp
functions on CUDA, by limiting the number of neighboring points in the
model to achieve hundreds of times the acceleration efficiency
compared to serial programs.

Most of the acceleration optimizations in CPU parallel acceleration
have been targeted at examples with less than 1 million points. For
large-scale simulations, it is usually necessary to rely on supercomputers
or multi-CPU structures, which require higher equipment specifications
and are not user-friendly. Research on parallel of peridynamics based on
GPU has mostly been limited to transforming serial programs into par-
allel ones. Many optimization strategies bring acceleration effects that
mainly depend on the improvement of the GPU’s own performance,
while optimizations designed to fit the hardware structure of the GPU
are relatively limited.

In addition, there are still some issues in GPU parallel computing:

1 Function Serials Program:
2 for i — 0 to nt do

3 | Calculation;

4 end

5 Function Parallel Program,;

6 nodeldx « threadldx.x + blockIdx.x x blockDim.x;

if nodeldx < nt then

Calculation;
end

O 0

Y. Yang et al.

Algorithm 2
Parallel pseudocode for bond based function.

Engineering Analysis with Boundary Elements 172 (2025) 106133

Data: gpuldx, threadldx.x, blockldx.x, blockDim.x, maxNeighbor, nodeldx, targetldx,

Rex, nt, numfam[]

Result: res

nodeldx « gpuldx / maxNeighbor;
targetldx «— gpuldx % maxNeighbor;

res < 0.0;

res «— Calculation();
atomicAdd(&target[nodeldx], res);
end

(e B e Y S

gpuldx « threadldx.x + blockldx.x * blockDim.x;

if nodeldx < nt and targetldx < numfam [nodeldx] then

(1) The memory space allocated for storing neighborhood points

does not have a predetermined size, which leads to the inefficient

use of thread and memory resources. This results in a wastage of
memory and computational resources, making it challenging for

GPUs to handle large-scale problems.

Most GPU parallel calculations still heavily rely on global mem-

ory and have not fully utilized CUDA’s memory structure,

resulting in a waste of memory bandwidth.

(3) Most PD parallel algorithm lacks general utility. Some may
restrict the size of the neighborhood, handle only uniformly
distributed and undamaged discrete structures, or limit the the-
ory of PD.

(2

—

Based on the limitations mentioned above, a bond-based general-PD
parallel algorithm on CUDA based on GPU parallelism is developed to
improve memory usage and computational efficiency. The algorithm
implements a particle parallel mode, as well as a more efficient accessing
and storage strategy using register bandwidth. This eliminates the lim-
itation of the number of neighborhood points and enhances the search
speed, resulting in significant speedups compared to the serial program
and other parallel algorithms. This allows for quick analysis of the
deformation and crack propagation in BBPD and the framework is also
applicable to other PD theories.

The rest of this paper is organized as follows: Section 2 introduces the
bond-based PD theory and the parallel strategy. The general PD program
is validated through numerical analyses in Section 3. The performance
of the developed parallel program, its generalization ability, and effi-
ciency are discussed in Section 4. Section 5 presents the conclusions.

2. Methodology
2.1. Bond-based PD theory

Bond-based PD was first introduced in 2000 [1] and is widely
applied. Its motion equation can be expressed as follows:

pu(x,t) = /f[u' —u,X —x,tjdVy+b(x,t), 1)

Hy

where u, p, b and Vy are the displacement, density, body force per unit
volume at material point x and the volume of material point x. The
neighborhood Hy is called horizon, which is usually taken to be a
spherical with radius 8. f represents the pairwise force density vector,

which is computed by:

£0.8) = - j; esu. @

£=x —x is the initial relative position, =u' —u’ is the current
relative displacement. c is the micromodule. s represents the stretch of a
bond:

el -
1€l
The force density vector can be modified through a history-

dependent scalar valued function u as Eq. (4). When the stretch s of a
bond exceeds its critical stretch s, failure occurs.

S

3

1,ifs(&,t) < s.forall0 < ¢ <t
0, otherwise ’

e ={ @

Local damage at a point is defined as the weighted ratio of the
number of eliminated interactions to the total number of initial in-
teractions of a material point with its family members. The local damage
at a point can be quantified as

_ ij/'t(i.‘a:- t)de’

fndVa ©

p(x,t)=1

2.2. Parallel strategy

The implementation process of BBPD algorithm is outlined in Table 1
and Fig. 1. The steps involve structural discretization, neighborhood
point generation, and the application of boundary conditions, which are
executed only once. Throughout the time iteration process, functions
such as calculating internal forces and updating displacements require
thousands or even tens of thousands of iterations, making it the most
time-consuming part. Consequently, optimizing the time-step loop
functions is crucial.

In the BBPD analysis framework, functions can be broadly catego-
rized into three types:

(1) Functions based on material points as the smallest computational
units: These functions require information that is only related to
the material points.

(2) Functions based on bonds as the smallest computational units:
These functions are predominantly located within the time step
loop. As a result, they consume a significant amount of time and

Y. Yang et al.

Algorithm 3
Neighborhood points generation.

Engineering Analysis with Boundary Elements 172 (2025) 106133

Input: node[], nt, radius
Output: nodefam(]
1 Function Find-NeighborNum () :

2 nodeldx < threadldx.x + blockldx.x * blockDim.x;

3 if nodeldx < nt then

4 for i:nt do

5 if distance(node[nodeldx], node[i]) < radius then
6 numfam[nodeldx] ++;

7 end

8 end

9 end

10 Function Get-MaxNeighbors () :

11 | nodeldx « threadldx.x + blockldx.x * blockDim.x;

12| ifnodeldx < pdoConst. ntp then

13 if numfam[nodeldx] > maxNeighbor then
14 | maxNeighbor «— numfam[i];

15 end

16| end

17| atomicMax(maxNeighbor, currMax);
18 Function Find-Neighbors () :

19 nodeldx « threadldx.x + blockldx.x * blockDim.x;

20 if nodeldx < nt then

21 for i:nt do

22 if distance(node[nodeldx], node[i]) < radius then
23 nodefam[numfam[nodeldx]] « i;

24 end

25 end

26 end

spatial resources. Therefore, these functions will be the primary
targets for optimization.

(3) Neighborhood search functions: This type of function is quite
special. When performing a global search, it requires searching all
bonds based on particles as the smallest computational units.

The above categorization will serve as the foundation for subsequent
optimizations. The traditional BBPD program based on CPU serial
computation serves as a baseline to compare with the subsequent opti-
mized programs.

2.3. Parallel based on material points

The original loop for P material points is divided into P threads to
execute the calculations within the loop in parallel. Algorithm 1

provides the pseudocode form for parallelizing computations related to
points. At this stage, the functions associated with points have achieved
the finest level of parallelism granularity. The global thread coordinates
for the points are set as follows:

nodeldx = threadldx.x + blockIdx.x x blockDim.x, 6)

Where, threadld.x is the local index of the thread within its block,
indicating the position of the current thread within the block. blockIdx.x
is the index of the block within the grid, indicating the position of the
current block within the grid. blockDim.x is the size of the block, indi-
cating the number of threads in each block.

2.4. Parallel based on bonds

Since the function of bonds typically resides within the time-step

Y. Yang et al. Engineering Analysis with Boundary Elements 172 (2025) 106133
4
baseline3.0 optimized3.0
10° 4 optimized3.0 1000 - optimized3.5
optimized3.5 optimized4.0
4] .
10 optimized4.0 800 A
.2
103 4 s
» 8 600 A
g 102 g
- 3
= 2 400 |
1075 2
<
100 4 200
=14
10 ' . ; 04
10° 108 107 10° 100 107

Number of material points

(a)

Number of material points

(b)

Fig. 2. Comparison between the parallel and series program of neighborhood generation module (a) Time consumption analysis of neighborhood generation(ms), (b)

Speedup analysis of neighborhood generation module.

loop and is executed repeatedly, optimizing them can significantly
reduce the overall computation time.

The important step is to set global thread coordinates. This involves
defining the computational grid in CUDA, which determines how
threads are mapped onto the GPU. Each thread is responsible for
computing the state of a particular bond or set of bonds, ensuring that
the computation is distributed across the GPU’s processing units.

gpuldx = threadIdx.x + blockIdx.x x blockDim.x. @
Then, the index of the present points is changed as

nodeldx = gpuldx/maxNeighbor. (€©))
The neighborhood index of present point is:

targetldx = gpuldx%maxNeighbor. ()]

In the implementation, maxNeighbor is an estimated value for the
number of neighbors in the model. This transforms the original thread
count into P x maxNeighbor, representing the estimated number of
bonds, where P stands for the total number of material points. The
pseudocode for parallelizing computations related to bonds is presented
in Algorithm 2. During the computation, all bond data must be updated
to their corresponding points. Since the concurrent execution of each
thread can potentially affect the global particle information, the pro-
gram uses atomicAdd for mutual exclusion when writing to global
memory. This ensures that only one thread can modify shared data at
any given time, thus preventing data races, as indicated in line 7.

2.5. Parallel of Neighborhood Generation Function

In order to parallelize the program, it is necessary to separate the
neighborhood list. Since the exact number of domain points is not
known in advance, it is necessary to allocate enough memory and launch
threads based on the estimated number of neighborhood points. This
results in some waste memory space and thread resources. As a solution,
this process is broken down into three functions. First, obtain the

number of neighborhoods for all points; then use the determined
maximum number of neighborhood points to replace the original esti-
mated value; Finally, generate neighborhood points based on the allo-
cated memory, as shown in Algorithm 3.

Breaking down the neighborhood generation function into three
parts, the corresponding time complexity becomes twice that of the
original. This may result in more time spent on the neighborhood gen-
eration part. However, since this part of the function only needs to be
executed once in the entire program, the reduction in memory and the
savings in execution resources are an improvement for the subsequent
loops that need to be performed thousands of times, so the overall ef-
ficiency is higher. Additionally, two optimization techniques are
employed to accelerate this function.

The semi-neighborhood technique is only applicable to PD algo-
rithms in which the neighborhood points remain unchanged during the
computation. The neighborhood points are determined based on the
distance of a bond. This distance is bound to the geometric structure and
will not change during the iteration process. It is important to note that if
point j is within the neighborhood space of point i, then point i must also
be within the neighborhood space of point j. As a result, the original time
complexity can be reduced from O(P"2) to O(P"2/2). The other is
pruning method, when a point has already appeared in the neighbor-
hood of a target point, and if there are consecutive (2*estimate-1) points
that are not in the neighborhood of the target point (the estimated value
is set to the number of horizontal points in the geometry), then jump
directly to the next target point, and prune the subsequent points.

To test the efficiency of the optimized neighborhood generation
function, the executive time and acceleration ratio of optimized parallel
program with § values of 3.0dx, 3.5dx and 4.0dx are compared to that of
series program with a § value of 3.0dx.

The results are depicted in Fig. 2, where "optimized" refers to the
optimized algorithm, and "baseline" refers to the original program. A
comparison of the two shows that the optimized algorithm has signifi-
cantly improved in the neighborhood generation module. In Fig. 2 (a), as
the number of points increases, the time consumption of the optimized

Y. Yang et al.

Finished thread

Present executed thread on warp-N

Present executed thread on warp-N+1

Warp-N

Engineering Analysis with Boundary Elements 172 (2025) 106133

| Will be executed thread

Present executed thread on warp-N+2

15 23 31

L]
L]

SEEEE
EEEEE

EEEE
| I I S O S (S
| [[[[| e e [e [

Main thread

Warp 7
- fiEgsessassask
DREEEREEEEEEE

AtomicAdd

AtomicAdd
Global memory h_l

Fig. 3. The schematic of a general register memory access.

algorithm also increases, but at a slower rate compared to the baseline
program. The time spent generation for neighborhoods gradually in-
creases as the neighborhood radius expands. In Fig. 2 (b), when the
number of points is below 10°, there’s a tenfold time difference. As the
number of points increases to 108, the difference becomes more than 100
times, and after 107, it even achieves an acceleration efficiency of over
1000 times.

2.6. Optimization strategy of memory access

The parallel algorithms mentioned above all make use of global
memory, which does not fully utilize memory resources and still has
significant optimization potential. Registers in the CUDA memory
structure have the largest memory bandwidth and the smallest memory
latency. In the CUDA sm_89 architecture, a thread block can utilize up to
65,536 register resources. For calculating internal forces, each thread
requires 32 registers, totaling 20,480 for a maximum complete thread
block with 1024 threads. The number is well below the available register
count, preventing register overflow. Therefore, utilizing the bandwidth
of registers for high-speed memory access is a more efficient strategy. In

CUDA, a warp is the smallest hardware unit of execution, and the reg-
ister resources it occupies can exchange information with each other
without needing to access global memory. Thus, this section utilizes
warp functions to implement data exchange within the warp, reducing
the need to access global memory by exchanging data in registers.

In the internal force calculation of a single particle, where a particle
requires launching MaxNeighbor threads. First, classify the threads
within the same warp and match them according to the index of the
current point, as well as use a 32-bit unsigned number as a mask for
storage. When the bit is set to 1, it represents that thread will perform an
accumulation. For example, in the computation process of warp-N
shown in Fig. 3: the blue part matches the first 27 threads, which
calculate the bonds of the same point, using the binary expression mask-
1 =1111 1111 1111 1111 1111 1111 1110 0000. The green part
matches the last 5 threads, which calculate the key information of the
next point, using the binary expression mask-2 = 0000 0000 0000 0000
0000 0000 0001 1111. Then, select the leading thread from the warp. By
default, the first channel that matches the same nodeldx in the warp is
chosen. For example, channel 0 in mask-1 is the leading thread for this
computation, and channel 27 in mask-2 is the leading thread for the

Y. Yang et al.

Algorithm 4
A general register memory access optimization.

Engineering Analysis with Boundary Elements 172 (2025) 106133

Data: gpuldx, threadldx.x, blocklIdx.x, blockDim.x, maxNeighbor, nodeldx, targetldx,

laneldx, warpSize, res, nt, numfam[], mask, offset

Result: res

1 gpuldx « threadldx.x + blockldx.x * blockDim.x;

2 nodeldx «— gpuldx / maxNeighbor;

3 targetldx «— gpuldx % maxNeighbor;
4 laneldx <« gpuldx % warpSize;

5 res «— 0.0;

6 mask «<— match_all sync(nodeldx);

7 if nodeldx < nt and targetldx < numfam[nodeldx] then

8 res «— Calculation();
9 _syncwarps(); // (waiting until all threads in same warp executed here)
10 if mask == OxFFFFFFFF then
11 while offset > 1 do // operating register in the same warp to add
12 res+= shfl down sync(mask, res, offset, warpSie):
13 offset /= 2;
14 end
15 end
16 else
17 while offset > 1 do // operating register in the same warp to add
18 res += shfl sync(mask, res, offset, warpSize);
19 offset >>1 ;
20 end
21 end
22 if laneldx == getFirstMatchLane(mask) then
23 atomicAdd(&target[nodeldx], res);
24 end
25 end

second part. Next, use the _shfl sync() function to broadcast the data
calculated by the channels marked as 1 in the mask to the leading thread
and accumulates to obtain the final result. Since the computation of each
point may cross threads, a plus operation is required to update the global
data. The pseudocode is detailed in Algorithm 4-4, it is important to note
that the thread matching function _match_all_sync() used in step 6 re-
quires a CUDA compute capability greater than 7.0. Additionally, all
threads in this method execute in parallel, which can lead to data racing
issues when reading and writing. Writing to the same memory location
at the same time can result in inconsistent data. Therefore, atomicadd is
used when writing back to global memory. Atomicadd prevents the data
at the memory address being added to from being overwritten.

Integrating the aforementioned parallel strategies and optimization
techniques, a low-cost, high-efficiency BBPD algorithm parallelized on
GPU has been designed and named PD-general.

3. Numerical analysis and discussions

The developed parallel program is implemented with a GeForce RTX
4070 GPU. This GPU features 46 streaming multiprocessors, 5888 CUDA
cores, and uses CUDA version 12.2. It is based on the sm_89 architecture
and has a maximum global memory size of 12GB, with a memory
bandwidth of 469.43GiB/s, and a theoretical bandwidth is 502.73GiB/s.
It should be noted that due to the use of a PCI-E 3.0 slot on the

Y. Yang et al.

100mm —<

+
S0mm

Fig. 4. The schematic of a two-dimensional plate with uniaxial tension.

motherboard, there is some bandwidth loss. The constant memory size
of the graphics card device is 64KB. The CPU platform used is an Intel
Core i7-10,700, an octa-core, sixteen-thread processor with a base fre-
quency of 2.90 GHz. The memory size is 64GB with a memory band-
width of 45.8GiB/s. The operating system executed is Ubuntu 22.04.3
LTS. After exploring the optimal thread organization for the program, a
configuration of 256 threads was chosen. In subsequent studies, all
CUDA functions will adopt the block configuration of (256, 1, 1). Two
examples are calculated to verify the validation of parallel algorithms of
the basic BBPD and BBPD with cracks.

3.1. Uniaxial tension of a two-dimensional plate

A two-dimensional plate with dimensions of 100mm x 50mm is
depicted in Fig. 4. The plate has a mass density of p = 5000 kg/m°, an
elastic modulus of E = 100 GPa, and a fixed Poisson’s ratio of 1/3.
Opposite loads of magnitude ¢ =100 MPa are applied to the top and
bottom sides. The neighborhood radius § = 3.17dx. The time step is dt =
0.001 s, and the total number of iterations is 6000. The bond constant is
¢ =315.0 x E/(8.0 x 7 x 8.

Three different sets of data with 5000, 125,000, and 1000,000
discrete points are being analyzed, respectively. The experimental re-
sults can be seen in Fig. 5, which shows that as the number of points
increases, the results become smoother and more accurate.

Based on varying numbers of material points and neighborhood
sizes, the error analyses are conducted. The time step is 4000, and for the
example calculation, the neighborhood radii are set as 3.1dx and 3.2dx
as shown in Fig. 6. It is evident that the error decreases as the number of
points increases. Furthermore, with a larger neighborhood radius, the
corresponding error decreases as well, due to the increased number of
neighborhood points.

Engineering Analysis with Boundary Elements 172 (2025) 106133

The displacements of top material points are used to test the
convergence of the program with different time iterative steps. Five
discretization models with 1250, 5000, 20,000, 80,000, and 320,000
points are being analyzed to compare with the theoretical solution. The
number of iterations is set at 4000 steps. Fig. 7 shows that as the time
step progresses, the results initially exhibit oscillations and then tend
towards the theoretical solution. The results approach stability by the
2750th step. Additionally, as the number of discrete material points
increases, the results more closely approximate the analytical solution.

3.2. Kalthoff-Winkler Crack Propagation

Fig. 8 shows the experimental setup for the numerical validation of
Kalthoff-Winkler. The dimensions arel0mm x 20mm. Two parallel
cracks, each 5mm in length, were created at distances of 7.5mm and
12.5mm from the left boundary at the top. An initial downward velocity
boundary condition of v = -10 m/s, was applied in the middle of the two
cracks. The material density is p = 7800 kg/m°, the elastic modulus is E
= 190 GPa, the time step is dt = 0.01us, and the total number of time
steps is 1000.

The results are displayed in Fig. 9, indicating that cracking begins
around the 190th time step and continues to propagate. By the time step
870, a rupture has occurred at an angle of approximately 110° to the pre-
existing cracks. These results are consistent with the outcomes provided
in the Kalthoff-Winkler experiment [34] in Fig. 10, confirming the ac-
curacy of the parallel program of BBPD with cracks.

4. Discussions
4.1. Most effective thread performance

The study aims to find the most effective thread organization for the
program. The smallest execution unit on the GPU is a warp, which
consists of 32 threads. Therefore, the thread blocks are organized as 32k
(k is a positive integer). The study compares the performance of different
thread block organizations in three models, using the computation of
internal forces as the baseline. The testing will be conducted using
Nsight systems, analyzing the execution of a single time step. Thread
block organizations of 64, 128, 256, 512, 768, and 1024 threads will be
tested, and the results are shown in Fig. 11. The bar chart describes the
occupancy rate, while the line chart indicates execution efficiency.

When the number of threads per block is 1024, it results in the lowest
performance. The higher the occupancy rate of the thread block orga-
nization, the greater the computational efficiency. In general, the or-
ganization with 128 to 256 threads delivers the best performance.
Taking into account the potential impact of an increased neighborhood
radius, the organization with 256 threads is chosen. Subsequent studies
will be based on this test, and all CUDA functions will use the form of
block=(256, 1, 1).

4.2. Overall Run Time

In this section, the total computation time of the program will be
examined. The overall computation time is defined as the complete
execution time from the start to the end of the program, including all
operations except for data output. The experiment involves running
three models on three different execution platforms: linear programs,
OpenMP parallel programs, and CUDA parallel programs, which are
respectively named: Serial, OpenMP, CUDA. The experiment covers
seven groups of discrete structures of different scales, with the number
of points ranging from 20,000 to 2000,000.

The study analyzed cases where the number of neighborhood points
was greater than 32 and less than 32. Fig. 12 (a) and (c) indicate that the
CUDA-based parallel program is significantly more efficient than the
OpenMP and series programs. Additionally, as the number of the ma-
terial points increases, the efficiency of CUDA-based parallel program

Y. Yang et al. Engineering Analysis with Boundary Elements 172 (2025) 106133

0.0009 0.0045
AR | 0.0008 ns 0.004
0.0007 0.0035
0.0006 0.003
0.0005 0.0025
2k 0.0004 ok 0.002
0.0003 0.0015
0.0002 0.001
0.0001 0.0005
> O 0 > 0fF 0
-0.0001 -0.0005
-0.0002 -0.001
-0.0003 -0.0015
2 -0.0004 2 -0.002
-0.0005 -0.0025
-0.0006 -0.003
-0.0007 -0.0035
4 -0.0008 4r -0.004
-0.0009 -0.0045
1 1 1 1 1 1 1 1 1 1 1 1
-2 4 6 8 2 0 2 8
X X
(a) 5,000UX (b) 5,000UY
0.0009 0.0045
sl 0.0008 ok 0.004
0.0007 0.0035
0.0006 0.003
0.0005 0.0025
2k 0.0004 2k 0.002
0.0003 0.0015
0.0002 0.001
0.0001 0.0005
> Op 0 > 0F 0
-0.0001 -0.0005
-0.0002 -0.001
-0.0003 -0.0015
2 -0.0004 2 -0.002
-0.0005 -0.0025
:g% -0.003
. -0.0035
A -0.0008 4 10,004
-0.0009 -0.0045
1 1 1 1 1 1 1 N N N 1 1
-2 0 2 4 6 8 .2 0 2 4 6 8
X X
(c) 125,000UX (d) 125,000UY
0.0009 0.0045
sk 0.0008 o - - 0.004
0.0007 0.0035
0.0006 0.003
0.0005 0.0025
2+ 0.0004 2k 0.002
0.0003 0.0015
0.0002 0.001
0.0001 0.0005
> O 0 > O 0
-0.0001 -0.0005
-0.0002 -0.001
-0.0003 -0.0015
2 -0.0004 2 -0.002
-0.0005 -0.0025
-0.0006 -0.003
4k -0.0007 4l -0.0035
-0.0008 -0.004
-0.0009 -0.0045
1 1 1 1 1 1 1 1 1 1 1 1
-2 0 2 4 6 8 -2 0 2 4 6 8
X X
(¢) 1,000,000UX (f) 1,000,000UY

Fig. 5. Displacements of a two-dimensional plate with the uniaxial tension (a)(c)(e) horizontal displacements, (b)(d)(f) vertical displacements.

Y. Yang et al.

51 radius=3. 1dx
radius=3. 2dx
a4 |
|
|
|
& 3
£
E
= 24
\\
N\ —
14
0 25000 50000 75000 100000 125000 150000 175000
Number of material points
Fig. 6. Error analysis with different material points.
R e — 4
——1
|
)
0. 006 4 NS \
0.005 + \ -~ 4__#; R]
0.004 - |
.'_I',
7 0.003
&
point=1250
0.002 4 point=5000
point=20000
0.001 4 point=80000
point=320000
0. 000 4 - == Analytical
0 500 1000 1500 2000 2500 3000 3500 4000

Iterative steps

Fig. 7. Error analysis with different iterative steps.

becomes more noticeable. As depicted in Fig. 12(b) and (d), the initial
acceleration ratio of the parallel program is relatively low, with no
significant difference compared to the OpenMP program. However, as
the material points increases, the acceleration ratio begins to rise. The
acceleration ratio of BBPD with cracks can reach up to 200 times that of
OpenMP.

The detailed execution time and acceleration ratio are listed in the
Tables 2-3. The structure consists of 1000 x 2000 points with neigh-
borhood radii of 5§ = 3.1dx and § = 3.2dx, respectively. The time step is
set at 0.001s, with a total of 1000 iterations.

Tables 2 and 3 show the execution times of the BBPD function
modules, and all implementations have successfully achieved accelera-
tion. Among them, the calculation of internal forces is the most time-
consuming part, but it is also the part that accelerates the fastest,
achieving a speedup of 314.61 times compared to the serial program.

Tables 4 and 5 show the results of the BBPD with cracks, this model
demonstrates even faster acceleration compared to the previous one.
However, as the number of horizontal points increases, the storage row
becomes larger, making cache misses more likely. This is fatal for a CPU,
but it has minimal impact on a GPU, as the pipeline execution can hide
the latency of cache misses. The OpenMP-optimized parallel program is
also affected by caching, but its acceleration ratio remains relatively
stable.

10

Engineering Analysis with Boundary Elements 172 (2025) 106133

p—10mm

20mm

Fig. 8. Schematic of Kalthoff-Winkler.
4.3. Optimization Method Performance

In this section, the efficiency of the general register memory access
module is tested. The scale of the selected case is 2000,000 points, the
time step dt is 0.001, and the total number of iterations is 1000 steps. A
comparison of all functions is made with the neighborhood exceeding 32
points. The functions were analyzed by linear programs, OpenMP pro-
grams, unoptimized GPU programs, and general register methods,
which are named Serial, OpenMP, Bond, and General, respectively. The
detailed results are shown in Fig. 13. The figure indicates that the
optimized GPU strategy significantly reduces the computation time
compared to the other programs.

Crack simulation, which skips computation when a failure occurs,
leads to higher overall execution efficiency. This is especially true when
all bonds fail. Despite appearing to have more memory access than
BBPD, actual the execution speed is faster. However, this is may not be
the case for CPUs, as they perform the exact same judgment every time.
Even if they skip computational, the power may not be sufficient to
cover the computation delay, resulting in low efficiency.

Fig. 14 shows the acceleration ratios for different optimization
methods when the number of neighbors exceeds 32. The OpenMP par-
allel program consistently maintains an acceleration ratio of 5 to 9
times, while the General method can achieve a stable acceleration effect
between 200 to 350 times. In contrast, the bond-based method performs
weakly. These results highlight that the General method is effective in
handling situations with a large number of neighbors.

4.4. Maximum Case Size Study

In this section, the maximum case size is investigated. It is known
that the demand for global memory in the peridynamics framework is as
follows:

BBPD = 5ADP + AP + 4PN, (10)
BBPD/Crack = 5ADP + AP + 5PN, 1D
where

D = dimension, one dimension=1, two dimension=2, three

dimension=3;

P = Number of material points;

N = Number of neighborhood points
A = precision, single=4, double=8.

ADP, AP, and PN represent memory size measured in bytes. The GPU
used in the experiment has a theoretical memory size of 12GB. However,
due to the operating system’s requirements and memory occupied by the
CUDA launch, only about 11GB of memory is available for program-
ming. The following calculations will use 11GB as the baseline to
determine the maximum scale of the PD-General. By substituting the
four conditions: 1. Double precision, N = 28; 2. Double precision, N =

Y. Yang et al. Engineering Analysis with Boundary Elements 172 (2025) 106133

I T T

005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 085 09 085 005 01 015 02 025 03 035 04 045 0S5 0S5 06 065 07 075 08 085 09 085

(a) Step=190 (b) Step=350
- e Bl oo — |

005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 085 09 095 005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 085 09 095

(c) Step=650 (d) Step=870

Fig. 9. Crack propagation processes.

(a) Step=0 (b) Step=350

(c) Step=650

Fig. 10. Results of Kalthoff-Winkler experiment [34].

36; 3. Single precision, N = 28; 4. Single precision, N = 36 into the the initial scale. Increase the number of points with each iteration until

corresponding memory calculation formulas, the theoretical memory the program crashes. Test the two models mentioned above, and the

occupancy under the corresponding conditions is obtained as follows in calculation results are shown in the Table 7 below:

Table 6. According to official Nvidia data, the GPU environment offers
Start with the theoretical results from the table mentioned earlier as greater support for single precision, with single-precision FLOPS at

11

Y. Yang et al.

(Sw) dwn uonNddXY

Occupancy (%)

Engineering Analysis with Boundary Elements 172 (2025) 106133

(Sw) dwn uonndIXY

64 128 256 512 768 1024
No. of threads in a block
(b)BBPD with cracks

Fig. 11. Thread Organization and Program Performance Relationship.

;\?
S
D ¢
-
=
&
=
9
6 4
64 128 256 512 768 1024
No. of threads in a block
(a)BBPD
~——— serialUnder32
serialOver32
~——— openMPUnder32
10°{ —— openMPOver32
> ~— cudaUnder32
e cudaOver32
S. 10" /
=
3
"
53]
10° 4
10° 10
No. of material points
(a) Execution time of BBPD
~—— SerialUnder32
103 SerialOver32
~—— OpenMPUnder32
~——— OpenMPOver32
= CUDAUNder32
ng 1 CUDAOver32
]
§ 10"
"
m
10° 5

10° 108

No. of material points

(c) Execution time of BBPD with cracks

200 4 OpenMPUnder32
175 1 OpenMPOver32
~—— CUDAUnder32
150 4 —— CUDAOver32
2
£ 125 1
g
= 100 A
5
B 75
2
50 4
25 A
0 L _ T - T
10° 108
No. of material points
(b) Acceleration ratio of BBPD
800 - OpenMPUnder32
OpenMPover32
~——— CUDAUnder32
~——— CUDAover32
e 600 -
g
=
2
S 400
L
o)
Q
Q
<
200
0 -

10° 106

No. of material points

(d) Acceleration ratio of BBPD with cracks

Fig. 12. Overall Execution Situation.

29.15 TFLOPS, while double-precision FLOPS are 455.4 GFLOPS. This
means that the throughput of single precision is 64 times that of double
precision. Consequently, at higher precision levels, double precision
processing runs slower when handling the same scale problem. The size
of the neighborhood radius also affects program performance. Tables 6-
7 demonstrate that a greater number of neighborhood points results in a
smaller execution scale and reduced execution efficiency.

12

For large-scale cases, the PD-General models described in this paper
are capable of simulating tens of millions of particles. With optimized
parameter settings, the maximum number of particles that can be
simulated is 75,645,000. Specifically, in single precision, simulating
1000 steps can be completed in just 100 to 600 seconds, while in double
precision, the execution time ranges from 900 to 2500 seconds. It is
important to note that this time frame is generally kept within an hour.

Y. Yang et al.

Table 2

Execution time and acceleration ratio of BBPD with maxNeighbor = 28.

Engineering Analysis with Boundary Elements 172 (2025) 106133

Functions Execution time (ms) Acceleration ratio
Serial OpenMP PD-General OpenMP PD-General
Discretization 1.84 1.59 1.58 x 107! 1.15 11.65
Neighborhood generation 1.19 x 10* 1.94 x 10° 4.32 x 10% 6.16 27.61
Internal force 5.12 x 10° 6.79 x 10* 1.63 x 10° 7.54 314.61
Update displacements 4.34 x 10° 3.42 x 10° 1.72 x 102 1.27 25.26
Table 3
Execution time and acceleration ratio of BBPD with maxNeighbor = 36.
Functions Execution time (ms) Acceleration ratio
Serial OpenMP PD-General OpenMP PD-General
Discretization 1.86 1.62 1.58 x 107! 1.14 11.78
Neighborhood generation 1.20 x 10* 1.95 x 10° 4.46 x 10% 6.16 26.93
Internal force 6.59 x 10° 8.24 x 10* 3.74 x 10° 8.00 176.11
Update displacements 4.33 x 10° 3.09 x 10° 1.71 x 102 1.40 25.28
Table 4
Execution time and acceleration ratio of BBPD with cracks with maxNeighbor = 28.
Functions Execution time (ms) Acceleration ratio
Serial OpenMP PD-General OpenMP PD-General
Neighborhood generation 3.38 x 10° 5.44 x 10° 1.14 x 102 6.21 297.87
Initial crack 8.96 x 107 1.32 x 10? 1.78 6.81 503.89
Internal force 2.13 x 10° 2.78 x 10° 1.95 x 10° 7.83 1091.13
Displacement update 3.92 x 10° 2.93 x 10° 1.29 x 102 1.34 30.26
Crack judgement 9.15 x 10° 1.37 x 10° 1.43 x 10° 6.68 638.22
Damage judgement 1.25 x 10° 2.14 x 10* 1.45 x 102 5.84 863.34
Table 5
Execution time and acceleration ratio of BBPD with cracks with maxNeighbor = 36.
Functions Execution time (ms) Acceleration ratio
Serial OpenMP PD-General OpenMP PD-General
Neighborhood generation 3.38 x 10° 5.43 x 10° 1.14 x 10? 6.22 296.90
Initial crack 9.52 x 10% 1.40 x 102 2.28 6.79 417.09
Internal force 2.27 x 10° 2.97 x 10° 4.08 x 10° 7.64 556.04
Displacement update 4,09 x 10° 2.92 x 10° 1.29 x 10? 1.39 31.77
Crack judgement 9.76 x 10° 1.45 x 10° 1.83 x 10° 6.75 532.44
Damage judgement 1.32 x 10° 3.18 x 10* 1.83 x 102 4.15 721.30
103 4 Serial 103 Serial
OpenMP OpenMP
Bond Bond
102 5 General ~ 102 5 General
—~ w)
- &
~]
g E
‘Z 104 = 1014
= 0 g 10
S B
=} -]
L;j 100 4 @ 100 4
-14
10 1014
T T T T
10° 108 10° 106

No. of material points

(a) BBPD

13

(b) BBPD with cracks

Fig. 13. Optimization Method Performance Comparison.

No. of material points

Y. Yang et al.

350 A

300 A

OpenMP
Bond
General

= = NN

o w o w

S © & o
| ! ! !

Accelerationratio

w
o
1

o
L

10° 10°

No. of material points

(a) BBPD>32

ionratio

Accelerat

350

300

250

n
o
o

150

100

50

Engineering Analysis with Boundary Elements 172 (2025) 106133

1 OpenMP
Bond
1 General
10° 106
No. of material points
(b) BBPD with cracks >32

Fig. 14. Optimization Method Acceleration Ratio Comparison Chart.

Table 6
Precision and Neighborhood Size Comparison.

Precision Neighborhood BBPD BBPD with crack
Double 8=3.1dx 200P 228P
Double 8=3.2dx 232P 268P
Single 8=3.1dx 156P 184pP
Single 8§=3.2dx 188pP 224pP
Table 7
Maximum Case Size Table.
Modes No. of Precision No. of memory PD
points Neighborhood
BBPD 50,904,050 double 36 10.98 1109.21
58,969,800 double 28 10.99 663.54
62,720,000 float 36 10.93 183.39
75,645,000 float 28 10.9 120.35
BBPD 44,067,272 double 36 10.98 1346.26
with 51,795,842 double 28 10.99 952.913
cracks 52,647,848 float 36 10.97 176.145
64,184,450 float 28 10.94 132.569

5. Conclusions

By analyzing the peridynamics model and the exploring parallel
computing theory, a high-performance, low-cost peridynamics analysis
framework called PD-General has been implemented using CUDA. It
achieves two models of BBPD, and BBPD with cracks. In the parallel
framework, the developed neighborhood generation module effectively
reduces memory occupation waste. The general memory access module
significantly improves the computational efficiency. This allows for
expanded computational capabilities on personal computers. It reduces
the execution time of CPU programs from several days to just a few
hours or even tens of minutes using ordinary PC-level graphics cards,
which is significant for advancing the PD research. Furthermore, PD-
General can achieve acceleration effects of hundreds of times greater
than serial programs and OpenMP parallel programs. Finally, the
maximum device case exploration is conducted for these two models.

CRediT authorship contribution statement
Yang Yang: Writing — review & editing, Writing — original draft,

Supervision, Funding acquisition. Zixin Su: Software, Data curation.
Yijun Liu: Writing — review & editing, Supervision, Funding acquisition.

14

Declaration of competing interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence

the

work reported in this paper.

Acknowledgements

The authors would like to thank the financial support from National

Natural Science Foundation of China (Project Nos. 12272160 and
12372198) and the Shenzhen National Science Foundation (Project No.
20231129213819001).

Data availability

Data will be made available on request.

References

[1]

[2

—

[3

—

[4

=

[5

—

(6]

[71

[8]
[91
[10]
[11]

[12]

[13

Silling S A. Reformulation of elasticity theory for discontinuities and long-range
forces. J Mech Phys Solids 2000;48(1):175-209.

Jafarzadeh S, Larios A, Bobaru F. Efficient solutions for nonlocal diffusion
problemsvia boundary-adapted spectral methods. J Peridynam Nonlocal Model
2020;2:85-110.

Jafarzadeh S, Wang L, Larios A, et al. A fast convolution-based method for
peridynamic transient diffusion in arbitrary domains. Comput Methods Appl Mech
Eng 2021;375:113633.

Jafarzadeh S, Mousavi F, Larios A, et al. A general and fast convolution-based
method for peridynamics: applications to elasticity and brittle fracture. Comput
Methods Appl Mech Eng 2022;392:114666.

Jafarzadeh S, Mousavi F, Wang L, et al. PeriFast/Dynamics: a MATLAB code for
explicit fast convolution-based peridynamic analysis of deformation and fracture.
J Peridynam Nonlocal Model 2023:1-29.

Wang L, Jafarzadeh S, Mousavi F, et al. Perifast/corrosion: a 3d pseudo spectral
peridynamic matlab code for corrosion. J Peridynam Nonlocal Model 2023:1-25.
T Ni, M Zaccariotto, Q Zhu, et al. Matrix-based implementation and GPU
acceleration of linearized ordinary state-based peridynamic models in MATLAB.
2023, arXiv: 2309. 11273.

Liu W, Hong J W. A coupling approach of discretized peridynamics with finite
element method. Comput Methods Appl Mech Eng 2012;245:163-75.

Madenci E, Oterkus E, et al. Coupling of the peridynamic theory and finite element
method. Springer; 2014. p. 191-202.

Bobaru F, Yang M, Alves L F, et al. Convergence, adaptive refinement, and scaling
in 1D peridynamics. Int J Numer Meth Eng 2009;77(6):852-77.

Dipasquale D, Zaccariotto M, Galvanetto U. Crack propagation with adaptive grid
refinement in 2D peridynamics. Int J Fract 2014;190:1-22.

Galvanetto U, Mudric T, Shojaei A, et al. An effective way to couple FEM meshes
and peridynamics grids for the solution of static equilibrium problems. Mech Res
Commun 2016;76:41-7.

Lee J, Oh S E, Hong J W. Parallel programming of a peridynamics code coupled
with finite element method. Int J Fract 2017;203:99-114.

http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0001
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0001
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0002
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0002
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0002
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0003
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0003
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0003
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0004
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0004
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0004
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0005
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0005
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0005
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0006
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0006
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0008
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0008
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0009
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0009
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0010
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0010
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0011
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0011
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0012
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0012
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0012
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0013
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0013

Y. Yang et al.

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Shojaei A, Zaccariotto M, Galvanetto U. Coupling of 2D discretized peridynamics
with a meshless method based on classical elasticity using switching of nodal
behaviour. Eng Comput 2017;34(5):1334-66.

Fan H, Li S. Parallel peridynamics-SPH simulation of explosion induced soil
fragmentation by using OpenMP. Comput Part Mech 2017;4(2):199-211.

Bobaru F, Ha Y D. Adaptive refinement and multiscale modeling in 2D
peridynamics. Int J Multiscale Comput Eng 2011;9(6):635-60.

Yang Y, Liu YJ. Modeling of cracks in two-dimensional elastic bodies by coupling
the boundary element method with peridynamics. Int J Solids Struct 2021;217-
218:74-89.

Yang Y, Liu YJ. Analysis of dynamic crack propagation in two-dimensional elastic
bodies by coupling the boundary element method and the bond-based
peridynamics. Comput Methods Appl Mech Eng 2022;399:115339.

Nguyen C T, Oterkus S, Oterkus E. A peridynamic-based machine learning model
for one-dimensional and two-dimensional structures. Continuum Mech Thermodyn
2023;35(3):741-73.

Haghighat E, Bekar A C, Madenci E, et al. A nonlocal physics-informed deep
learning framework using the peridynamic differential operator. Comput Methods
Appl Mech Eng 2021;385:114012.

Chen Y, Yang Y, Liu Y J. A neural network peridynamic method for modeling
rubber-like materials. Int J Mech Sci 2024;273:109234.

Y Yang, Y Chen, Y J Liu. A novel neural-network non-ordinary state-based
peridynamic method for large deformation and fracture analysis of hyperelastic
membrane. Comput Methods Appl Mech Eng 431, 117239.

Wen-Mei W H, Kirk D B, EL Hajj I. Programming massively parallel processors: a
hands-on approach. Morgan Kaufmann; 2022.

15

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

Engineering Analysis with Boundary Elements 172 (2025) 106133

Mao Z R, Li X Y, Hu S Y, et al. A GPU accelerated mixed-precision smoothed
Particle Hydrodynamics framework with cell-based relative coordinates. Eng Anal
Bound Elem 2024;161:113-25.

Littlewood D J. Roadmap for peridynamic software implementation. Albuquerque,
NM (United States): Sandia National Lab. (SNL-NM); 2015.

Sun L. Stability analysis method study of metalic plates based on peridyanmics.
Shanghai Jiao Tong University; 2014.

Liu S, Hu Y, Yu Y. Parallel computing method of peridyanmic models based on
GPU. J Shanghai Jiaotong Univ 2016;50(9):1362-7.

Li X, Ye H, Zhang J. Redesigning peridigm on SIMT accelerators for high-
performance peridynamics simulations. In: 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE; 2021. p. 433-43.

Zhong J, Han F, Zhang L. Accelerated peridynamic computation on GPU for quasi-
static fracture simulations. J Peridynam Nonlocal Model 2023:1-24.

Mossaiby F, Shojaei A, Zaccariotto M, et al. Opencl implementation of a high
performance 3d peridynamic model on graphics accelerators. Comput Math Appl
2017;74(8):1856-70.

Boys B, Dodwell T J, Hobbs M, et al. PeriPy-A high performance OpenCL
peridynamics package. Comput Methods Appl Mech Eng 2021;386:114085.
Bartlett J, Storti D. A novel memory-optimized approach for large-scale
peridynamics on the GPU. J Peridynam Nonlocal Model 2023;5(4):472-90.
Wang X, Wang Q, Aa B, et al. A GPU parallel scheme for accelerating 2D and 3D
peridynamics models. Theor Appl Fract Mech 2022;121:103458.

Ren H, Zhuang X, Cai Y, et al. Dual-horizon peridynamics. Int J Numer Meth Eng
2016;108(12):1451-76.

http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0014
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0014
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0014
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0015
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0015
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0016
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0016
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0017
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0017
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0017
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0018
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0018
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0018
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0019
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0019
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0019
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0020
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0020
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0020
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0021
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0021
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0023
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0023
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0024
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0024
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0024
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0025
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0025
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0026
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0026
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0027
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0027
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0028
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0028
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0028
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0029
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0029
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0030
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0030
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0030
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0031
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0031
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0032
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0032
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0033
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0033
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0034
http://refhub.elsevier.com/S0955-7997(25)00021-9/sbref0034

	A fast bond-based peridynamic program based on GPU parallel computing
	1 Introduction
	2 Methodology
	2.1 Bond-based PD theory
	2.2 Parallel strategy
	2.3 Parallel based on material points
	2.4 Parallel based on bonds
	2.5 Parallel of Neighborhood Generation Function
	2.6 Optimization strategy of memory access

	3 Numerical analysis and discussions
	3.1 Uniaxial tension of a two-dimensional plate
	3.2 Kalthoff-Winkler Crack Propagation

	4 Discussions
	4.1 Most effective thread performance
	4.2 Overall Run Time
	4.3 Optimization Method Performance
	4.4 Maximum Case Size Study

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

